26 research outputs found

    Development of the Illinois Surgical Quality Improvement Collaborative (ISQIC): Implementing 21 Components to Catalyze Statewide Improvement in Surgical Care

    Get PDF
    INTRODUCTION: In 2014, 56 Illinois hospitals came together to form a unique learning collaborative, the Illinois Surgical Quality Improvement Collaborative (ISQIC). Our objectives are to provide an overview of the first three years of ISQIC focused on (1) how the collaborative was formed and funded, (2) the 21 strategies implemented to support quality improvement (QI), (3) collaborative sustainment, and (4) how the collaborative acts as a platform for innovative QI research. METHODS: ISQIC includes 21 components to facilitate QI that target the hospital, the surgical QI team, and the peri-operative microsystem. The components were developed from available evidence, a detailed needs assessment of the hospitals, reviewing experiences from prior surgical and non-surgical QI Collaboratives, and interviews with QI experts. The components comprise 5 domains: guided implementation (e.g., mentors, coaches, statewide QI projects), education (e.g., process improvement (PI) curriculum), hospital- and surgeon-level comparative performance reports (e.g., process, outcomes, costs), networking (e.g., forums to share QI experiences and best practices), and funding (e.g., for the overall program, pilot grants, and bonus payments for improvement). RESULTS: Through implementation of the 21 novel ISQIC components, hospitals were equipped to use their data to successfully implement QI initiatives and improve care. Formal (QI/PI) training, mentoring, and coaching were undertaken by the hospitals as they worked to implement solutions. Hospitals received funding for the program and were able to work together on statewide quality initiatives. Lessons learned at one hospital were shared with all participating hospitals through conferences, webinars, and toolkits to facilitate learning from each other with a common goal of making care better and safer for the surgical patient in Illinois. Over the first three years, surgical outcomes improved in Illinois. DISCUSSION: The first three years of ISQIC improved care for surgical patients across Illinois and allowed hospitals to see the value of participating in a surgical QI learning collaborative without having to make the initial financial investment themselves. Given the strong support and buy-in from the hospitals, ISQIC has continued beyond the initial three years and continues to support QI across Illinois hospitals

    Retrieval of Prefabricated Zirconia Crowns with Er,Cr:YSGG Laser from Primary and Permanent Molars

    No full text
    (1) Background: Prefabricated zirconia crowns are used to restore teeth in children. The purpose of this study was to evaluate the removal of these crowns with the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser; (2) Methods: A total of 12 primary and 12 permanent teeth were prepared and prefabricated zirconia crowns were passively fitted and cemented with two resin modified glass-ionomer (RMGI) cements. Surface areas of prepared teeth and crowns were calculated. Crowns were removed using two laser settings: 4.5 Watts, 15 Hertz, 20 water/20 air, and 5 Watts, 15 Hertz, 50 water/50 air. The retrieval time and temperature changes were tested recorded. Data were analyzed using ANOVA with Tukey’s adjusted post hoc pairwise comparison t-test; (3) Results: The average time for crown removal was: 3 min, 47.7 s for permanent; and 2 min 5 s for primary teeth. The mean temperature changes were 2.48 °C (SD = 1.43) for permanent; and 3.14 °C (SD = 1.88) for primary teeth. The time to debond was significantly positively correlated with tooth inner surface area and volume, outer crown volume, and the cement volume; (4) Conclusions: Use of the Er,Cr:YSGG laser is an effective, safe and non-invasive method to remove prefabricated zirconia crowns cemented with RMGI cements from permanent and primary teeth

    Overview of the MOSAiC expedition:atmosphere

    No full text
    Abstract With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    Tales of diversity: Genomic and morphological characteristics of forty-six <i>Arthrobacter</i> phages

    No full text
    <div><p>The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single <i>Arthrobacter</i> sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these <i>Arthrobacter</i> phages are primarily lytic, and only the singleton Galaxy is likely temperate.</p></div

    Genome organization of <i>Arthrobacter</i> phage Amigo, Cluster AQ.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Genome organization of <i>Arthrobacter</i> phage Maggie, Cluster AN.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p

    Genome organization of <i>Arthrobacter</i> phage Laroye, Cluster AL.

    No full text
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0180517#pone.0180517.g005" target="_blank">Fig 5</a> for details.</p
    corecore