184 research outputs found

    EDUCATIONAL PROGRAMS TO ADDRESS THE ECONOMIC ADJUSTMENTS FACING TOBACCO FARMERS AND RURAL COMMUNITIES

    Get PDF
    This paper discusses the context within which educational programs tailored to tobacco producers and related rural communities have developed. Discussion is expanded by examining current program approaches employed by various organizations. Many of these organizations have a manual stake in helping producers in tobacco communities develop their management capacity. A range of initiatives aimed at facilitating economic adjustment is compared, including the major issues addressed and expected outcomes. Many of the initiatives have made useful contributions; however, gaps and limitations remain. These are considered as future educational efforts and issues are discussed.educational programs, tobacco producers, Community/Rural/Urban Development,

    In Vitro Assessment of Developmental Neurotoxicity: Use of Microelectrode Arrays to Measure Functional Changes in Neuronal Network Ontogeny1

    Get PDF
    Because the Developmental Neurotoxicity Testing Guidelines require large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemical or morphological, and do not assess function of neuronal networks. In this study, microelectrode arrays (MEAs) were used to determine if chemical-induced changes in function could be detected by assessing the development of spontaneous network activity. MEAs record individual action potential spikes as well as groups of spikes (bursts) in neuronal networks, and activity can be assessed repeatedly over days in vitro (DIV). Primary cultures of rat cortical neurons were prepared on MEAs and spontaneous activity was assessed on DIV 2, 6, 9, 13, and 20 to determine the in vitro developmental profile of spontaneous spiking and bursting in cortical networks. In addition, 5 μM of the protein kinase C inhibitor bisindolylmaleamide-1 (Bis-1) was added to MEAs (n = 9–18) on DIV 5 to determine if changes in spontaneous activity could be detected in response to inhibition of neurite outgrowth. A clear profile of in vitro activity development occurred in control MEAs, with the number of active channels increasing from 0/MEA on DIV 2 to 37 ± 5/MEA by DIV 13; the rate of increase was most rapid between DIV 6 and 9, and activity declined by DIV 20. A similar pattern was observed for the number of bursting channels, as well as the total number of bursts. Bis-1 decreased the number of active channels/MEA and the number of bursting channels/MEA. Burst characteristics, such as burst duration and the number of spikes in a burst, were unchanged by Bis-1. These results demonstrate that MEAs can be used to assess the development of functional neuronal networks in vitro, as well as chemical-induced dysfunction

    Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates.

    Get PDF
    We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity; principal components analysis using these features demonstrated segregation of data by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the number of wells needed for comparing different treatments. Overall, these results demonstrate that network development on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate screening drugs, chemicals, or disease states for effects on neurodevelopment.EC was supported by a Wellcome Trust PhD studentship and NIHR Cambridge Biomedical Research Centre studentship. DH was supported by student services contract #EP-13-D-000108 and by a travelling fellowship from the Company of Biologists.This is the final version of the article. It first appeared from SAGE Publications via https://doi.org/10.1177/108705711664052

    Minor versus major mergers: the stellar mass growth of massive galaxies from z=3 using number density selection techniques

    Get PDF
    We present a study on the stellar mass growth of the progenitors of local massive galaxies with a variety of number density selections with n≤1×10−4 Mpc−3 (corresponding to M*=1011.24 M⊙ at z=0.3) in the redshift range 0.3<z<3.0. We select the progenitors of massive galaxies using a constant number density selection, and one which is adjusted to account for major mergers. We find that the progenitors of massive galaxies grow by a factor of 4 in total stellar mass over this redshift range. On average the stellar mass added via the processes of star formation, major and minor mergers account for 24±8, 17±15 and 34±14per cent, respectively, of the total galaxy stellar mass at z=0.3. Therefore 51±20per cent of the total stellar mass in massive galaxies at z=0.3 is created externally to their z=3 progenitors. We explore the implication of these results on the cold gas accretion rate and size evolution of the progenitors of most massive galaxies over the same redshift range. We find an average gas accretion rate of∼66±32 M⊙ yr−1 over the redshift range of 1.5<z<3.0. We find that the size evolution of a galaxy sample selected this way is on average lower than the findings of other investigation

    Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy

    Get PDF
    Synthetic efforts to prepare indium phosphide (InP) quantum dots (QDs) have historically generated emissive materials with lower than unity quantum yields. This property has been attributed to structural and electronic defects associated with the InP core as well as the chemistry of the shell materials used to overcoat and passivate the InP surface. Consequently, the uniformity of the core–shell interface plays a critical role. Using X-ray emission spectroscopy (XES) performed with a recently developed benchtop spectrometer, we studied the evolution of oxidized phosphorus species arising across a series of common, but chemically distinct, synthetic methods for InP QD particle growth and subsequent ZnE (E = S or Se) shell deposition. XES afforded us the ability to measure the speciation of phosphorus reliably, quantitatively, and more efficiently (with respect to both the quantity of material required and the speed of the measurement) than with traditional techniques, i.e., X-ray photoelectron spectroscopy and magic angle spinning solid state nuclear magnetic resonance spectroscopy. Our findings indicate that even with deliberate care to prevent phosphorus oxidation during InP core synthesis, typical shelling approaches unintentionally introduce oxidative defects at the core–shell interface, limiting the attainable photoluminescence quantum yields

    A consistent measure of the merger histories of massive galaxies using close-pair statistics I:Major mergers at z &lt;3.5

    Get PDF
    We use a large sample of 350,000\sim 350,000 galaxies constructed by combining the UKIDSS UDS, VIDEO/CFHT-LS, UltraVISTA/COSMOS and GAMA survey regions to probe the major merging histories of massive galaxies (>1010 M>10^{10}\ \mathrm{M}_\odot) at 0.005<z<3.50.005 < z < 3.5. We use a method adapted from that presented in Lopez-Sanjuan et al. (2014) using the full photometric redshift probability distributions, to measure pair fractions\textit{fractions} of flux-limited, stellar mass selected galaxy samples using close-pair statistics. The pair fraction is found to weakly evolve as (1+z)0.8\propto (1+z)^{0.8} with no dependence on stellar mass. We subsequently derive major merger rates\textit{rates} for galaxies at >1010 M> 10^{10}\ \mathrm{M}_\odot and at a constant number density of n>104n > 10^{-4} Mpc3^{-3}, and find rates a factor of 2-3 smaller than previous works, although this depends strongly on the assumed merger timescale and likelihood of a close-pair merging. Galaxies undergo approximately 0.5 major mergers at z<3.5z < 3.5, accruing an additional 1-4 ×1010 M\times 10^{10}\ \mathrm{M}_\odot in the process. Major merger accretion rate densities of 2×104\sim 2 \times 10^{-4} M\mathrm{M}_\odot yr1^{-1} Mpc3^{-3} are found for number density selected samples, indicating that direct progenitors of local massive (>1011M>10^{11}\mathrm{M}_\odot) galaxies have experienced a steady supply of stellar mass via major mergers throughout their evolution. While pair fractions are found to agree with those predicted by the Henriques et al. (2014) semi-analytic model, the Illustris hydrodynamical simulation fails to quantitatively reproduce derived merger rates. Furthermore, we find major mergers become a comparable source of stellar mass growth compared to star-formation at z<1z < 1, but is 10-100 times smaller than the SFR density at higher redshifts.Comment: 26 pages, 18 figures, accepted to MNRA
    corecore