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Abstract	

We	examined	neural	network	ontogeny	using	microelectrode	array	(MEA)	recordings	

made	in	multi-well	MEA	plates	(mwMEAs)	over	the	first	12	days	in	vitro	(DIV).	In	primary	

cortical	cultures,	action	potential	spiking	activity	developed	rapidly	between	DIV	5	and	12.	

Spiking	was	sporadic	and	unorganized	at	early	DIV,	and	became	progressively	more	

organized	with	time,	with	bursting	parameters,	synchrony	and	network	bursting	increasing	

between	DIV	5	and	12.	We	selected	12	features	to	describe	network	activity;	principal	

components	analysis	using	these	features	demonstrated	segregation	of	data	by	age	at	both	

the	well	and	plate	levels.	Using	random	forest	classifiers	and	Support	Vector	Machines,	we	

demonstrated	that	4	features	(CV	of	within	burst	ISI,	CV	of	IBI,	network	spike	rate	and	

burst	rate)	could	predict	the	age	of	each	well	recording	with		>65%	accuracy.		When	

restricting	the	classification	to	a	binary	decision,	accuracy	improved	to	as	high	as	95%.	

Further,	we	present	a	novel	resampling	approach	to	determine	the	number	of	wells	needed	

for	comparing	different	treatments.	Overall,	these	results	demonstrate	that	network	

development	on	mwMEA	plates	is	similar	to	development	in	single-well	MEAs.	The	

increased	throughput	of	mwMEAs	will	facilitate	screening	drugs,	chemicals	or	disease	

states	for	effects	on	neurodevelopment.	

	 	



	

	

	

Introduction	
Microelectrode	array	(MEA)	recordings	are	a	useful	tool	to	study	the	activity	of	networks	of	

interconnected	neurons,	both	in	vitro	and	in	vivo.	In	vitro,	neural	networks	on	MEAs	

demonstrate	many	characteristics	of	intact	neural	networks;	this	includes	extracellular	

recordings	of	action	potentials	(“spikes”)	and	groups	of	action	potentials	(“bursts”)	

simultaneously	from	multiple	points	in	the	network1.	The	spontaneous	activity	in	these	

networks	exhibits	pharmacological	responsiveness	and	plasticity2–5.	Thus,	primary	cultures	

of	neural	networks	on	MEAs	have	been	widely	utilized	to	study	neurophysiology,	

neuropharmacology	and	neurotoxicology	(for	review,	see	6).	In	addition,	the	ontogeny	of	

network	activity	on	MEAs	has	been	described	by	numerous	different	laboratories	4,7–10.	

Until	recently,	however,	the	throughput	of	MEA	devices	has	been	limited,	such	that	it	was	

not	possible	to	study	more	than	a	small	handful	(e.g.	4-6)	of	networks	at	a	time.		

Recently,	two	manufacturers	of	MEA	devices	have	introduced	multi-well	MEA	

(mwMEA)	devices,	which	allow	for	recordings	to	be	made	from	12-96	wells	

simultaneously,	with	8-64	electrodes	per	well.	The	increase	in	throughput	offered	by	

mwMEA	devices	expands	the	capabilities	of	MEA	systems,	allowing	for	drug	and	toxicant	

screening11,12.	Further,	when	combined	with	cultures	that	have	undergone	genomic	

manipulation13,14	or	with	patient-derived	inducible	pluripotent	stem	cells15,16,	mwMEA	

recordings	have	been	used	to	describe	how	network	function	is	affected	by	disease	states.	

Finally,	mwMEAs	offer	the	ability	to	screen	large	numbers	of	chemicals	for	potential	effects	

on	developing	networks17,18.	Given	the	significant	public	concern	over	the	potential	role	of	



	

chemicals	in	neurodevelopmental	diseases19,	study	of	chemical	effects	on	the	early	stages	

of	neural	network	ontogeny	using	mwMEAs	offer	a	functional	measure	for	developmental	

neurotoxicity	hazard	characterization.		

However,	in	order	for	such	studies	to	take	place,	the	basic	development	of	activity	in	

networks	on	mwMEAs	needs	to	be	described	in	detail.	In	lower	throughput	MEA	systems,	

neural	network	development	has	been	demonstrated	to	transition	from	low	activity	at	

early	developmental	ages	(e.g.	the	first	week	in	vitro),	to	one	of	coordinated	bursting,	

network	spikes	and	synchrony	at	later	time	points	(e.g.	the	second	week	in	vitro	and	

beyond).	While	it	is	expected	that	such	properties	will	be	retained	in	multi-well	systems,	it	

remains	to	be	demonstrated,	and	the	time-course,	variability	and	other	characteristics	

defined.	Further,	while	single-well	MEAs	contain	~60	microelectrodes,	only	12	well	

mwMEA	plates	have	an	equivalent	number	(64/well),	and	the	extent	to	which	network	

properties	can	be	defined	with	fewer	electrodes	has	not	been	determined.	

The	present	studies	describe	the	development	of	networks	of	mixed	primary	

cortical	cultures	in	48	well	mwMEA	plates	containing	16	microelectrodes/well.	These	

cultures	were	prepared	from	newborn	rat	cortex	and	contain	excitatory	and	inhibitory	

neurons	as	well	as	glia20,21	.	Over	the	first	two	weeks	in	vitro,	the	neurons	extend	axons	and	

dendrites22,	form	synapses23	and,	in	single	well	MEA	systems,	develop	spontaneous	

network	activity17.	The	present	studies	characterized	the	early	ontogeny	of	activity	of	these	

cultures	in	mwMEAs	by	describing	the	firing,	bursting,	synchrony	and	network	spike	

properties	over	the	first	12	days	in	vitro	(DIV),	as	previous	studies	with	this	culture	model	

have	shown	that	a	significant	change	in	the	rates	and	patterns	of	activity	occur	over	this	

time-frame.	Further,	we	sought	to	evaluate	the	utility	of	analysis	of	multiple	features	of	



	

network	activity	as	a	method	to	determine	the	ability	of	classification	approaches	to	

distinguish	between	cultures	under	different	conditions	(e.g.	control	vs	drug/	toxicant	

treatment,	different	ages,	or	genetically-modified	vs	wild	type).	

Methods	
Experimental	Protocol	

	 Cell	Culture.	All	procedures	using	animals	were	approved	by	the	National	Health	

and	Environmental	Effects	Laboratory	Institutional	Animal	Use	and	Care	Committee.	

Primary	cultures	were	prepared	from	the	cortex	of	0-24	h	old	rat	pups	as	described	

previously11,20,21.	Cells	were	plated	(1.5	x	105	cells	in	a	25	µl	drop	of	media)	onto	the	

surface	of	48	well	MEA	plates	(16	electrodes/well)	that	had	been	pre-coated	with	

polyethylenimine	(PEI)	and	laminin	as	previously	described11.	The	resultant	cultures	

contain	excitatory	and	inhibitory	neurons	and	glia	(Supplemental	Figure	1).	

MEA	Recordings.	Spontaneous	network	activity	was	recorded	using	Axion	

Biosystems	Maestro	768	channel	amplifier	and	Axion	Integrated	Studios	(AxIS)	v1.9	(or	

later)	software.	The	amplifier	recorded	from	all	channels	simultaneously	using	a	gain	of	

1200x	and	a	sampling	rate	of	12.5	kHz/channel.	After	passing	the	signal	through	a	

Butterworth	band-pass	filter	(300-5000	Hz)	online	spike	detection	(threshold	=	8x	rms	

noise	on	each	channel)	was	done	with	the	AxIS	adaptive	spike	detector.	On	days	in	vitro	

(DIV)	5,	7,	9,	and	12,	plates	were	placed	into	the	Maestro	amplifier	and	allowed	at	least	5	

min	to	equilibrate,	after	which	at	least	15	min	of	activity	was	recorded.	As	the	majority	of	

these	plates	were	used	on	or	around	DIV	14	for	other	experiments,	short	equilibration	and	

recording	times	(~30	min	total)	were	selected	to	minimize	the	potential	impact	of	repeated	



	

removal	of	cells	from	the	incubator	over	the	time	period	during	which	activity	was	

developing.	All	recordings	were	conducted	at	37	°C,	and	since	development	of	activity	was	

being	studied,	there	were	no	a	priori	thresholds	for	minimum	numbers	of	active	electrodes	

for	inclusion	of	a	well	in	the	data	set.	

Data	

Recordings	were	made	from	656	wells	across	16	MEA	plates	from	15	primary	cortical	
cultures	at	DIV	5,	7,	9	and	12	for	a	total	of	64	“plate-recordings”.	A	recording	of	one	plate	at	
DIV	12	was	missing	from	our	data	set,	and	one	recording	at	DIV	7	was	also	excluded	from	
the	analysis	as	its	mean	firing	rate	(1.2	Hz)	was	greater	than	2	SD	above	that	of	the	other	
DIV	7	plates	(mean	=	0.6Hz,	sd	=	0.3	).	This	resulted	in	a	total	of	62	plate	recordings,	with	a	
total	of	2976	well	recordings,	used	in	our	analysis.		Activity	was	usually	recorded	for	15—
30	minutes;	only	the	last	15	minutes	of	each	recording	was	analysed.	Features	related	to	
spikes,	bursts,	network	spikes24	and	correlations25	were	extracted	in	the	R	programming	
environment	v.	3.0	using	two	open	source	R-packages,	SJEMEA	and	MEADQ,	and	compiled	
into	a	well	level	data	set.	Bursts	were	detected	using	an	implementation	of	the	MaxInterval	
method	by	Neuroexplorer,	with	the	following	threshold	parameters:	maximum	interspike	
interval	(ISI);	0.25	s,	maximum	beginning	ISI;	0.1	s,	minimum	interburst	interval	(IBI);	0.8	
s,	minimum	burst	duration;	0.05	s	and	minimum	number	of	spikes	in	a	burst;	6.	Network	
spikes	were	identified	by	dividing	the	recording	period	into	3ms	bins	and	determining	the	
number	of	electrodes	in	the	well	that	fired	at	least	one	spike	during	each	bin;	the	minimum	
threshold	for	a	network	spike	was	for	spike	activity	to	be	present	on	at	least	5	electrodes	in	
a	given	time	bin.	Correlation	was	measured	using	the	spike	time	tiling	coefficient,	which	
was	defined	as	

���� = 1
2 (

�1 − �2
1− �1�2

+ �2 − �1
1− �2�1

)	

where	�1	is	the	proportion	of	spikes	on	electrode	1	that	occur	within	±�� of	a	spike	on	

electrode	2	and	�1	is	the	fraction	of	the	total	recording	time	that	lies	within	±��	of	a	spike	

on	electrode	1.		�2and	�2	are	the	equivalent	values	on	electrode	2.		Data	files	generated	by	

Axis	were	converted	into	HDF5	file	format26;	HDF5	files,	scripts	to	generate	the	features	

and	related	R-objects	are	stored	in	a	public	repository	

(http://github.com/sje30/EPAmeadev).		The	goal	of	establishing	a	public	data	set	is	to	

allow	full	reproducibility	of	our	analysis	and/or	to	allow	novel	analyses	to	be	conducted.		



	

Developmental	Analysis	

Twelve	features	were	chosen	to	describe	the	culture	activity,	which	are	summarized	in	

Table	1.	For	all	features,	the	plate	value	was	taken	as	the	median	of	all	non-zero	well	values	

on	the	plate	(zero	values	were	ignored).		

PCA	 	

We	performed	principal	component	analysis	using	the	R-package	FactoMineR27	using	all	

wells	and	all	12	features.	Two	PCAs	were	performed.	The	first	PCA	was	conducted	using	

data	in	which	a	well	constituted	one	observation,	while	the	second	PCA	was	conducted	

using	data	in	which	a	plate	median	constituted	an	observation.	For	each	PCA,	the	12	

dimensional	feature	vector	was	projected	down	onto	the	plane	created	by	the	first	two	

principal	component	dimensions.	The	purpose	of	the	projection	was	to	visually	assess	the	

level	of	differentiation	among	the	4	ages.	A	scree	plot	was	made	to	describe	the	cumulative	

percent	of	variation	explained	by	the	use	of	additional	principal	components	to	describe	

the	data.	The	scree	plots	aid	in	quantifying	the	extent	to	which	data	may	be	well	

represented	with	fewer	dimensions.		

Classification	

Classification	was	performed	to	understand	whether	and	to	what	extent	the	features	

chosen	above	could	distinguish	between	networks	with	different	characteristics	(for	

example,	control	vs	compound-treated).	Since	this	dataset	did	not	contain	networks	treated	

with	compounds,	our	classification	examined	the	ability	of	the	chosen	features	to	

discriminate	between	networks	of	different	ages.		Two	classification	techniques,	random	

forests	and	Support	Vector	Machines	(SVMs),	were	used	to	predict	the	age	of	each	well	



	

based	on	the	twelve	features	used	in	our	analysis.	In	some	cases,	due	to	the	low	number	of	

electrodes	on	a	well,	lack	of	bursting	or	lack	of	network	spike	activity,	some	feature	values	

were	missing;	this	was	particularly	evident	at	early	DIV.	For	classification	purposes,	for	

those	wells	with	no	bursts,	the	within	burst	firing	rate	and	burst	duration	were	set	to	zero.	

Similarly,	the	network	spike	peak	and	duration	were	set	to	zero	for	all	wells	that	exhibited	

no	network	spikes	over	the	recording	period.	Any	wells	that	had	null	values	for	the	

remaining	features,	namely	correlation,	CV	of	IBI	and	CV	of	within	burst	ISI,	were	excluded	

from	the	classification.	This	resulted	in	370/2976	well	recordings,	or	approximately	12.4%	

of	the	total	wells,	being	excluded	from	the	classification.	

Initially,	classification	was	performed	on	the	remaining	data	using	a	random	forest	model	

and	all	twelve	features.	The	relative	importance	of	each	of	the	features	was	determined	

based	on	the	amount	they	reduced	the	Gini	index.	Next,	Support	Vector	Machines	were	

used	to	examine	the	classification	accuracy	obtained	by	using	various	subsets	of	the	total	

twelve	features.	This	four-class	classification	problem	was	addressed	using	the	‘one-

against-one’	approach28,	which	involved	building	six	binary	SVMs,	one	for	each	pairwise	

combination	of	ages.	Each	of	these	SVMs	were	then	used	to	binarily	classify	every	data	

point,	and	the	class	to	which	each	point	was	most	frequently	assigned	across	the	six	SVMs	

was	taken	as	its	correct	class.	A	radial	kernel	was	chosen	over	linear	and	polynomial	

kernels	for	the	SVMs	because	of	its	superior	classification	accuracy	on	our	data.	The	

optimal	regularization	parameter	values	for	the	radial	kernel	were	found	by	conducting	a	

grid	search	across	a	range	of	values	using	ten-fold	cross-validation	on	the	entire	data	set.		



	

The	parameters	were	chosen	as	those	that	maximized	the	cross-validation	accuracy,	which	

were	� = 1
10
	and	� = 10.	

In	both	types	of	classification,	two	thirds	of	the	data	were	used	as	a	training	set	and	the	

remaining	third	used	to	test	the	classification	accuracy	of	the	model.	The	classification	was	

repeated	one	hundred	times	using	random	choices	of	the	training	and	test	sets	in	each	

iteration,	and	the	classification	accuracy	averaged	over	the	one	hundred	repetitions.	

Results	
Developmental	Profile	

On	DIV	2,	only	rare,	individual	spikes	were	recorded	(data	not	shown).	Spontaneous	

activity	in	the	neural	networks	arose	and	could	be	reliably	recorded	beginning	on	DIV	5	

(Supplemental	Figure	2).	Activity	as	assessed	by	most	of	the	parameters	used	here	

increased	with	DIV.	In	particular,	not	only	did	spiking	increase	with	time,	but	the	

organization	of	spiking	into	bursts	and	correlated	activity	across	the	network	

(Supplemental	Figure	2)	also	increased	with	DIV.	Quantification	of	the	changes	in	activity	

over	development	was	achieved	using	a	selection	of	twelve	measures	(Figure	1),	which	

were	used	to	describe	activity	at	the	level	of	the	entire	well	or	individual	electrodes,	which	

were	then	aggregated	into	well	level	values	by	taking	the	median.	

Spontaneous	firing	rate	

In	general,	activity	increased	over	development,	with	the	mean	firing	and	burst	rates	both	

monotonically	rising	with	increasing	DIV	(Figure	1A,	B).		

Bursting	activity	



	

A	clear	increase	in	bursting	activity	with	increasing	culture	age	was	also	observed.	

Although	burst	duration	did	not	show	strong	developmentally-related	changes	(Figure	1C),	

the	fraction	of	bursting	electrodes,	within	burst	firing	rate	and	percentage	of	spikes	

occurring	within	bursts	all	increased	over	development	(Figure	1D-F).	The	CV	of	inter-

burst	intervals	(IBIs)	and	within	burst	inter-spike	intervals	(ISIs)	also	increased	with	

development,	indicating	a	decrease	in	the	regularity	of	these	features	(Figure	1G,H).	

Synchronous	activity	

The	synchrony	of	activity	within	each	individual	well	on	a	plate	was	examined	using	a	

feature	called	network	spikes.	Network	spikes	were	defined	as	short	time	intervals	in	

which	the	number	of	active	electrodes	on	the	well	exceeded	a	threshold	value,	and	their	

rate,	duration	and	peak	number	of	active	electrodes	were	quantified	for	each	plate	(Figure	

1I-K).	The	frequency	of	network	spikes	increased	with	increasing	developmental	age.	To	a	

lesser	extent,	an	increase	in	the	network	spike	peak	(the	maximum	number	of	electrodes	

active	during	a	network	spike	out	of	a	possible	16)	was	also	observed	across	development.		

As	another	measure	of	network	synchrony,	we	calculated	the	mean	of	all	pairwise	

correlation	coefficients	for	all	electrodes	in	a	well,	using	the	spike	time	tiling	coefficient25.	

Correlations	strengthened	over	development,	particularly	at	early	ages	(Figure	1L).	

	

PCA	

A	PCA	was	undertaken	to	visualize	the	level	of	differentiation	among	the	four	culture	ages.			

The	wells	projected	onto	the	first	two	PC	dimensions	(Figure	2A)	show	a	stochastic	

organization	starting	from	the	earliest	age	(red,	DIV	5)	progressing	through	to	the	oldest	



	

age	(purple,	DIV	12).			The	progression	in	age	is	roughly	aligned	with	the	first	PC	

dimension,	which	accounts	for	over	50%	of	the	variation	(Figure	2B).	To	quantify	the	

relationship	between	PC	dimension	1	and	culture	age,	PC1	was	regressed	against	culture	

age.		The	linear	model	results	showed	that	PC1	increases	with	increasing	culture	age	(p-

value	of	slope<0.001,	Supplemental	Figure	3).		This	means	that	the	principal	mode	of	

variation	corresponds	to	the	difference	in	ages	of	the	cultures.			Moreover,	all	factor	

loadings	are	positive	on	the	first	PC	dimension,	meaning	that	an	increase	in	PC1	is	

associated	with	an	increase	in	all	12	variables.	Another	salient	aspect	of	the	PC	projection	is	

that	variation	appears	smaller	at	earlier	ages.	Similarly,	the	projection	of	the	plate	medians	

onto	the	first	two	PC	dimensions	yields	a	rough	segregation	by	DIV.		As	in	the	well-level	

PCA,	at	the	plate-level	DIVs	are	aligned	with	the	first	PC	dimension	(Figure	2C),	revealing	a	

consistent	age-related	characteristic	to	the	data.		A	greater	percentage	of	variability	is	

captured	by	the	first	PC	dimension	(67%;	Figure	2D)	as	compared	with	the	well-level	PCA,	

related	to	the	fact	that	taking	the	median	reduces	well-to-well	variability.		Both	PCAs	

display	sufficient	visual	differentiation	between	observations	by	DIV	that	a	more	thorough	

quantification	of	this	separation	is	warranted	through	classification	techniques.		

	Classification	

Classification	techniques	were	used	to	determine	the	degree	to	which	the	recordings	could	

be	separated	into	their	ages	using	the	features	specified	above.	Firstly,	a	random	forest	

model	was	built	and	used	to	predict	the	age	of	each	well,	using	the	twelve	features	from	our	

analysis.	The	model	was	built	using	two-thirds	of	the	data	as	a	training	set	and	its	accuracy	

determined	by	using	the	remaining	one-third	of	the	data	as	a	test	set.	When	used	to	predict	



	

the	age	of	each	well	from	the	four	possible	ages,	the	accuracy	of	the	random	forest	model,	

averaged	over	one	hundred	trials,	was	approximately	72%	(compared	to	the	25%	accuracy	

that	could	be	expected	by	chance).	

From	these	random	forest	models,	we	were	also	able	to	determine	the	relative	importance	

of	each	of	the	features	in	driving	the	classification	(Table	2	“Importance”	column).	The	two	

most	important	features	were	those	measuring	coefficients	of	variation,	namely	the	CV	of	

within	burst	ISI	and	CV	of	IBI.	In	our	developmental	analysis,	these	two	features	both	

exhibited	a	monotonically	increasing	trend	with	age.			

Next,	we	used	Support	Vector	Machines	(SVMs)	to	quantify	the	degree	to	which	recordings	

could	be	classified	correctly	by	age	when	only	a	subset	of	our	features	was	used.	The	SVM	

classifier,	built	using	the	same	proportion	of	training	and	test	sets	specified	above,	had	a	

slightly	higher	level	of	accuracy,	of	approximately	73%,	compared	to	the	random	forest	

model	using	all	twelve	features.	Using	the	ordering	of	feature	importance	found	above,	we	

were	then	able	to	analyze	how	prediction	accuracy	varied	as	the	number	of	features	was	

reduced.	Table	2	shows	the	performance	of	the	SVM	as	the	number	of	features	used	in	the	

classification	was	gradually	reduced	from	twelve,	in	the	bottom	row,	to	just	one	feature,	CV	

of	within	burst	ISI,	in	row	one.	In	general	we	found	that	the	classification	accuracy	

remained	high	(~70%	or	higher)	as	the	number	of	features	was	reduced.	However,	four	

features	(burst	rate,	network	spike	rate,	CV	of	IBI	and	CV	of	within	burst	ISI)	were	required	

to	maintain	a	prediction	accuracy	≥65%	(Table	2,	“Accuracy	%”	column).		

We	used	a	similar	method	to	examine	the	extent	to	which	each	pair	of	ages	of	arrays	could	

be	separated	using	classification	techniques.	In	this	case,	rather	than	using	all	of	the	data	in	



	

the	classification,	the	SVM	classifier	was	built	separately	on	each	pairwise	combination	of	

ages.	The	classifier	was	most	accurate	in	distinguishing	arrays	with	large	differences	in	age,	

for	example	DIV	5	and	DIV	12	arrays,	for	which	only	the	top	feature,	CV	of	within	burst	ISI,	

was	required	to	achieve	almost	92%	prediction	accuracy	(Table	3).	Classification	

performance	was	poorest	for	pairs	of	arrays	in	which	the	age	difference	was	low.	For	

example,	the	prediction	accuracy	for	distinguishing	DIV	9	from	DIV	12	arrays	was	only	just	

above	chance	when	using	one	feature.	Using	all	features	improved	the	ability	to	distinguish	

between	closely-related	ages	to	~82-83%,	which	is	well	above	chance	(Table	3).		

How	many	wells	are	needed?	

In	our	experiments	we	have	used	all	48	wells	on	a	plate	as	replicates	of	the	same	

experimental	condition.	This	is	a	conservative	way	of	using	the	multi-well	array,	and	an	

alternative,	higher	throughput,	approach	might	be	to	use	different	wells	for	different	

experimental	conditions.		However,	there	is	inevitably	a	trade-off	between	the	number	of	

experimental	conditions	tested	and	the	number	of	replicate	recordings	of	conditions	when	

assigning	conditions	to	wells	on	a	plate.	

We	therefore	sought	to	investigate	how	robust	our	results	were	if	fewer	wells	were	used	to	

form	a	signature	of	activity	at	a	given	age.	Intuitively,	we	expected	that	with	fewer	wells	we	

would	get	less	reliable	signatures	of	activity,	and	hence	poorer	classification.	Rather	than	

run	experiments	where	fewer	wells	were	used,	we	simulated	the	experiments	by	randomly	

removing	all	data	for	a	given	number	of	wells	on	each	of	the	16	plates,	and	then	repeated	

our	classification	tests	to	see	how	well	each	age	could	be	discriminated.	Figure	3	shows	

that	classification	accuracy	remained	above	60%	with	as	few	as	4	wells	per	plate.	With	16	



	

wells	(1/3	of	normal),	the	classifier	accuracy	is	close	to	the	stable	value.	For	our	particular	

question	then	of	discriminating	the	four	ages,	we	could	get	reliable	results	using	½	(24	

wells)	or	1/3	(16	wells)	of	the	data	that	we	generated	for	each	plate.				

	

Discussion	
The	present	results	describe	the	ontogeny	of	network	activity	in	48	well	MEA	plates	during	

the	first	12	days	in	vitro.	The	results	demonstrated	a	rapid	ontogeny	of	spiking,	bursting,	

synchrony	and	network	spiking	activity	over	this	period	of	time,	which	is	similar	to	the	

ontogeny	of	activity	in	single	well	MEAs.	Furthermore,	these	results	demonstrate	that	by	

considering	multiple	parameters	of	network	firing,	bursting	and	synchrony	properties,	

principal	components	analysis	and	classification	methods	can	be	used	as	reliable	

predictors	of	network	age	at	both	the	plate	and	well	levels.	These	results	demonstrate	the	

neural	network	ontogeny	on	mwMEAs	offers,	relative	to	single	well	systems,	a	high-

throughput	approach	to	study	network	development	and	its	perturbation	by	drugs,	

chemicals	and	disease.	

Previous	studies	of	cortical	and	hippocampal	network	ontogeny	have	demonstrated	that	

activity	begins	with	random,	single	spiking	activity	on	a	single	or	few	channels,	and	over	a	

period	of	2-3	weeks	in	vitro	progresses	to	bursting	activity	which	becomes	more	

synchronous	with	time4,7–10,	29.	This	is	accompanied	over	time	by	the	emergence	of	network	

bursts.	Similar	to	previous	data	from	our	laboratory	using	single	well	MEA	“chips”	where	

cells	were	seeded	at	a	high	density17	;	the	ontogeny	of	spiking	and	bursting	activity	

occurred	rapidly	within	the	first	two	weeks	in	vitro,	specifically	between	DIV	5	and	12	in	



	

the	present	study.	Our	data	are	consistent	with	that	of	other	laboratories	who	have	

reported	initiation	of	spiking	activity	as	early	as	3-6	DIV7,30.	While	our	data	describe	the	

initial	stages	of	the	ontogeny	of	network	activity,	we	did	not	examine	ages	beyond	DIV	12	

in	the	current	study,	and	cannot	rule	out	that	some	features	examined	may	continue	to	

“mature”	with	additional	time	in	culture.	Further,	the	ontogeny	of	network	development	in	

the	culture	used	here	does	occur	earlier	than	has	been	reported	by	other	laboratories18,31–

33.	Factors	that	may	influence	these	differences	include	the	age	at	which	the	cells	were	

isolated	(Postnatal	Day	0	here	vs	embryonic	day	18	in	other	studies)	as	well	as	the	plating	

density	(150K	cells	here	vs	50K	in	other	studies)8,11.		This	more	rapid	development	of	

network	activity	may	have	some	benefits	from	a	screening	standpoint,	as	it	could	shorten	

assay	times,	increase	throughput	and	reduce	costs,	although	ultimately,	the	screening	

needs	of	the	user	will	dictate	issues	such	as	culture	model	and	plating	density.	Regardless	

of	the	rate	of	network	ontogeny,	the	approaches	described	herein	can	be	applied	to	the	

resultant	data,	and	in	the	present	case,	it	appears	that	network	ontogeny	can	be	reliably	

predicted	by	using	as	few	as	3-5	wells/plate	by	considering	all	of	the	parameters.		

The	use	of	classification	techniques	such	as	random	forests	and	SVMs	indicated	that	the	

parameters	extracted	from	the	spike	trains	in	these	experiments	could	be	used	to	predict	

reliably	the	age	of	the	culture	from	between	the	four	different	age	categories	examined.	

While	the	models	performed	best	when	all	of	the	parameters	were	used	to	aid	

classification,	several	parameters	had	greater	influence	on	the	ability	to	predict	culture	age.	

These	included	the	CV	of	within	burst	ISI,	the	CV	of	the	IBI,	mean	burst	duration,	network	

spike	rate	and	burst	rate.	When	these	approaches	were	used	to	predict	between	two	



	

different	ages,	considering	all	of	the	parameters	resulted	in	greater	accuracy	regardless	of	

age.	This	indicates	that	using	multiple	parameters	will	provide	more	robust	discrimination	

of	different	ages	(or	perhaps	treatments)	than	relying	on	a	single	or	a	few	parameters.	The	

greatest	accuracy	was	achieved	when	predicting	between	larger	age	differences	(e.g.	DIV	5	

vs	12)	and	likely	reflects	the	relative	lack	of	bursts,	network	spikes	and	correlated	activity	

in	DIV	5	cultures.	This	is	consistent	with	the	relative	lack	of	connectivity	in	DIV	5	cultures.	

Synaptogenesis,	as	reflected	morphometrically	by	the	juxtaposition	of	pre	and	post-

synaptic	markers	in	this	model,	begins	around	DIV	6	and	continues	through	DIV	12	(Harrill	

et	al.,	2011).	Thus,	the	initiation	of	structural	evidence	of	synaptogenesis	corresponds	

nicely	with	increases	in	electrophysiological	parameters	on	DIV	7,	including	those	

parameters	reflecting	connectivity	(bursts,	network	spikes	and	correlated	activity).	

	

The	present	analysis	has	implications	for	using	mwMEAs	for	drug	development	or	chemical	

developmental	neurotoxicity	screening.	Both	classification	approaches	used	here	provided	

higher	accuracy	by	including	more	features.	Traditionally,	MFR	has	been	widely	utilized	to	

describe	drug-	or	chemical-induced	alterations	in	network	function2,6,11,12,18	as	it	is	easily	

extracted	from	the	data.	However,	when	possible,	determining	more	features	and	using	

them	collectively	rather	than	focusing	on	one	or	a	few	features	may	provide	greater	

sensitivity	in	detecting	effects,	as	well	as	possibly	facilitating	drug	or	chemical	

“fingerprinting”	approaches34.	In	addition,	the	classification	approaches	used	here	indicate	

that	age	of	a	network	can	be	reliably	determined	using	3-8	wells	from	each	plate,	indicating	

that	between	6	and	16	different	treatment	conditions	might	be	possible	on	a	given	48	well	



	

mwMEA	plate.	We	believe	our	study	is	the	first	to	assess	the	important	question	of	how	to	

efficiently	use	wells	on	a	mwMEA,	suggesting	that	as	few	as	3-8	wells	might	suffice	to	form	

a	reliable	pattern	of	activity.	However,	this	range	should	be	treated	with	caution:	as	can	be	

seen	from	Figure	3,	there	is	in	increasing	variance	with	fewer	wells,	and	more	importantly,	

results	are	likely	to	differ	depending	on	the	size	of	the	effect	being	measured.	Our	findings	

suggest	that	where	there	are	gross	changes	in	activity	patterns,	and	fewer	wells	are	

needed.	On	the	other	hand,	where	changes	in	activity	are	more	subtle,	we	would	expect	

more	replicates	to	be	required.	Our	recommendation	therefore	is	that	investigators	should	

repeat	our	sampling	approach	(Figure	3)	to	investigate	how	reducing	the	number	of	wells	

per	condition	can	affect	reliability	of	results.	

	

One	factor	that	influences	results	from	MEAs	is	the	culture	to	culture	variability.	Although	

this	was	not	specifically	addressed	in	the	present	studies	(typically	only	one	plate	was	

available	from	a	given	culture),	evidence	from	another	data	set	wherein	three	plates	each	

were	analyzed	from	several	different	cultures	indicated	that	culture	to	culture	variability	is	

much	greater	than	plate	to	plate	variability	(unpublished	data).	Thus,	obtaining	replicate	

values	for	different	treatments	(e.g.	concentrations	of	a	drug	or	chemical)	across	several	

different	wells	and	plates	from	the	same	culture	(e.g.	see	supplemental	material	in	Wallace	

et	al.,	201535)	may	be	preferable	to	obtaining	replicate	values	across	several	different	

cultures.	It	is	likely	that	the	use	of	a	primary	culture	model	does	contribute	to	the	culture	to	

culture	differences,	as	each	culture	is	prepared	from	different	animals.	This	may	in	the	



	

future	be	improved	by	the	use	of	stem	cell	derived	models,	which	should,	in	theory,	be	

more	homogeneous.	

In	conclusion,	we	have	described	the	early	development	of	neural	networks	grown	in	48	

well	mwMEA	plates	and	found	that	it	is	qualitatively	equivalent	to	development	of	network	

activity	in	single	well	MEAs.	Furthermore,	multi-parametric	evaluation	of	the	network	

activity	parameters	provides	an	accurate	method	of	classifying	networks	by	age.	Together,	

these	results	indicate	that	neural	networks	cultured	on	mwMEAs	will	be	a	useful	tool	to	

study	the	ontogeny	of	network	activity	as	well	as	the	potential	for	drugs,	chemicals	and	

diseases	to	disrupt	that	activity.	
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Table	1:	Features	used	in	our	analysis	and	a	brief	description	of	how	they	were	
calculated.		

Feature		 Description.	
Mean	firing	rate		
	

The	mean	firing	rate	(MFR)	on	each	electrode	was	calculated.	The	well	value	
was	the	median	value	of	all	active	electrodes.		

Burst	rate		
	

The	number	of	bursts	per	minute	on	an	electrode	was	calculated.	The	well	
value	was	the	median	value	from	all	electrodes	that	exhibited	bursting	
behaviour.		

Burst	duration		
	

The	mean	duration	of	all	bursts	on	an	electrode	over	the	recording	period	was	
calculated.	The	well	value	was	the	median	value	from	all	electrodes	that	
exhibited	bursting	behaviour.	

Fraction	of	bursting	electrodes		
	

An	electrode	was	classified	as	bursting	if	the	burst	rate	on	the	electrode	was	at	
least	one	per	minute.	The	well	value	was	the	number	of	electrodes	classified	as	
bursting	as	a	fraction	of	the	total	number	of	active	electrodes	on	the	well.		

Within	burst	firing	rate		
	

The	ratio	of	the	standard	deviation	to	the	mean	of	the	length	of	all	inter-	burst	
intervals	(IBI)	on	an	electrode.	The	well	value	was	the	median	value	from	all	
electrodes	that	exhibited	bursting	behaviour.		

Percentage	of	spikes	in	bursts		
	

The	number	of	spikes	on	an	electrode	classified	as	being	within	bursts	divided	
by	the	total	number	of	spikes	on	the	electrode.	The	well	value	was	the	median	
value	from	all	electrodes	that	exhibited	bursting	behaviour.		

CV	of	IBI		
	

The	ratio	of	the	standard	deviation	to	the	mean	of	the	length	of	all	inter-	burst	
intervals	(IBI)	on	an	electrode.	The	well	value	was	the	median	value	from	all	
electrodes	that	exhibited	bursting	behaviour.		

CV	of	within	burst	ISIs		
	

The	ratio	of	the	standard	deviation	to	the	mean	of	the	length	of	all	inter-	spike	
intervals	(ISI)	within	bursts	on	an	electrode.	The	well	value	was	the	median	
value	from	all	electrodes	that	exhibited	bursting	b		

Network	spike	rate		
	

The	well	value	was	the	number	of	network	spikes	on	the	well	per	minute	of	the	
recording	period	(See	Methods	section	for	definition	of	a	Network	Spike).		

Network	spike	duration		
	

The	duration	of	a	network	spike	was	defined	as	the	length	of	time	during	which	
the	number	of	active	electrodes	on	the	well	exceeded	the	threshold	value	(5).	
The	well	value	was	taken	as	the	median	duration	of	all	network	spikes	on	the	
well	during	the	recording	period.	

Network	spike	peak		
	

The	maximum	number	of	active	electrodes	during	each	network	spike.	The	
well	value	was	taken	as	the	median	peak	value	of	all	network	spikes	on	the	well	
during	the	recording	period.		

Mean	correlation		
	

The	correlation	between	every	pairwise	combination	of	electrodes	on	a	well	
was	calculated	using	the	spike	time	tiling	coefficient	(Cutts	&	Eglen,	2015)	with	
∆t	=	50ms.	(See	Methods	section	for	definition).	The	well	value	was	the	mean	of	
the	pairwise	correlations	between	all	distinct	electrodes	on	the	well.		

	

	 	



	

	

Table	2:	Classifier	performance	at	predicting	the	age	of	arrays.	Features	are	listed	in	
decreasing	order	of	importance,	based	on	the	importance	score	in	column	2,	derived	from	
random	forest	classification	and	normalized	to	the	top	score.	The	value	in	each	row	n	=	1	.	.	.	
12	of	column	3	is	the	mean	percentage	of	correct	classifications	using	the	top	n	features	in	
the	SVM	model.	For	example,	row	4	shows	that	the	classifier	was	65.0%	accurate	at	
predicting	age	using	the	top	four	features.		

	

Feature	 Importance	 	 Accuracy	%	
CV	of	within	burst	ISI	 1.00	 49.2	
CV	of	IBI	 0.70	 58.3	
Network	spike	rate	 0.50	 62.0	
Burst	rate	 0.49	 65.0	
Burst	duration	 0.44	 66.0	
%	Spikes	in	bursts	 0.39	 68.3	
Correlation	 0.36	 69.5	
Firing	rate	 0.35	 71.4	
Within	burst	firing	rate	 0.31	 72.7	
Bursting	electrodes	 0.22	 73.0	
Network	spike	duration	 0.18	 73.5	
Network	spike	peak	 0.09	 73.4	

	

	 	



	

	

Table	3:	Classifier	performance	at	predicting	the	age	of	arrays	for	each	pairwise	
combination	of	ages	(days	in	vitro).	Features	are	listed	in	decreasing	order	of	
importance,	and	the	value	in	each	row	n	=	1	.	.	.	12	is	the	mean	percentage	of	correct	
classifications	using	the	top	n	features,	as	described	in	Table	2.		

	

Feature	 Accuracy	%	

	
5	vs	
7	

5	vs	
9	

5	vs	
12	 7	vs	9	

7	vs	
12	 9	vs	12	

CV	of	within	burst	ISI	 75.0	 87.5	 91.8	 69.9	 78.1	 57.4	
CV	of	IBI	 77.4	 89.5	 93.6	 76.8	 85.5	 64.7	

Network	spike	rate	 79.3	 90.3	 95.5	 79.6	 88.0	 68.7	
Burst	rate	 79.3	 90.3	 95.3	 81.0	 88.4	 72.8	

Burst	duration	 79.7	 90.8	 95.3	 81.0	 88.6	 74.0	
%	Spikes	in	bursts	 81.6	 91.3	 95.6	 81.5	 90.4	 76.4	

Correlation	 82.2	 92.1	 95.6	 82.3	 90.9	 77.1	
Firing	rate	 82.3	 91.7	 95.7	 82.3	 90.9	 80.2	

Within	burst	firing	rate	 84.2	 92.7	 96.2	 82.4	 91.3	 81.2	
Bursting	electrodes	 83.6	 92.5	 96.2	 82.6	 91.8	 81.5	

Network	spike	duration	 83.7	 92.9	 96.8	 82.9	 92.8	 82.0	
Network	spike	peak	 82.2	 92.5	 96.8	 82.6	 93.0	 82.1	

	

	 	



	

	

	

Figure	Legends	

Figure	1:	Mean	firing	(A)	and	burst	rates	(B)	increase	with	development.	Box	plots	showing	

median	and	interquartle	range	are	shown	for	n=16	plates.	(C)	Burst	duration.	(D)	Fraction	

of	bursting	electrodes.	(E)	Within	Burst	Firing	rate(F)	Percentage	of	spikes	in	bursts.	(G)	

Coefficient	of	variation	(CV)	of	interburst	interval	(IBI).	(H)	CV	of	within	burst	interspike	

interval	(ISI).	(I)	Network	spike	rate.	(J)	Network	spike	duration.	(K)	Network	spike	peak.	

(L)	Mean	pairwise	correlation.		

	

Figure	2:	(A)	Well-level	PCA	projection	of	12-dimensional	feature	vectors	onto	PC	

dimension	1	(x-axis)	and	2	(y-axis).	Each	dot	represents	a	well,	colored	by	day	in	vitro	

(DIV)	of	recording.	Rough	ordering	from	youngest	(red,	DIV	5)	to	oldest	(purple,	DIV	12)	

wells	is	apparent	in	change	of	colors	along	the	positive	direction.	(B)	Scree	plot	displays	%	

variance	explained	by	the	number	of	PC	dimensions.	(C)	Plate-level	PCA	projection	of	plate	

medians	onto	PC	dimension	1	(x-axis)	and	2	(y-axis).	As	in	top,	rough	ordering	of	

observations	by	DIV	is	apparent	in	the	red	to	purple	transition	along	the	x-axis.	(D)	Scree	

plot	of	plate-level	PCA.	Compared	to	the	well-level	PCA	scree	plot,	a	larger	amount	of	

variation	is	captured	in	the	first	two	PC	dimensions	indicating	that	taking	the	plate	median	

reduces	variability.		

	

Figure	3:	Accuracy	of	predicting	the	age	of	each	well	by	sampling	n	≤	48	wells	on	each	plate.	



	

Dark	blue	line	shows	the	mean	accuracy,	while	the	vertical	lines	show	the	minimum	and	

maximum	accuracy	over	100	trials	with	random	choices	of	wells.	For	n	=	48,	the	error	bars	

indicate	the	small	variability	in	classification	due	to	the	partitioning	of	data	into	train/test	

sets.	The	red	dotted	line	indicates	baseline	level	of	performance	(25%)	for	a	classifier	

	

	


