182 research outputs found

    The Products Liability Statute of Repose in Florida: A Trap for the Unwary

    Get PDF
    In the past two decades there has been an explosion of product liability lawsuitsbrought against manufacturers of defective goods due to increased manufacturers\u27 exposure to liability. This phenomenon, referred to as the product liability revolution, has expanded manufacturers\u27 liability and facilitated recovery for injured plaintiffs for product-caused injuries

    Unravelling overlaps and torsion-facilitated coupling using two-dimensional laser-induced fluorescence

    Get PDF
    Two-dimensional laser-induced fluorescence (2D-LIF) spectroscopy is employed to identify contributions to fluorescence excitation spectra that arise from both overlapping bands and coupling between zero-order states (ZOSs). Evidence is found for the role of torsional motion in facilitating the coupling between vibrations that particularly involves the lowest-wavenumber out-of-plane vibrational modes. The experiments are carried out on jet-cooled p-fluorotoluene, where the molecules are initially in the lowest two torsional levels. Here we concentrate on the 390–420 cm−1 features in the S1 ← S0 excitation spectrum, assigning the features seen in the 2D-LIF spectrum, aided by separate dispersed fluorescence spectra. The 2D-LIF spectra allow the overlapping contributions to be cleanly separated, including some that arise from vibrational-torsional coupling. Various coupling routes open up because of the different symmetries of the lowest two torsional modes; these combine with the vibrational symmetry to provide new symmetry-allowed vibration-torsion (‘vibtor’) interactions, and the role of the excited m = 1 torsional level is found to be significant

    Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Get PDF
    The S1 ← S0 (A ~ 1B2 ← X~ 1A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene

    Iridium-catalysed ortho-directed deuterium labelling of aromatic esters – an experimental and theoretical study on directing group chemoselectivity

    Get PDF
    Herein we report a combined experimental and theoretical study on the deuterium labelling of benzoate ester derivatives, utilizing our developed iridium N-heterocyclic carbene/phosphine catalysts. A range of benzoate esters were screened, including derivatives with electron-donating and -withdrawing groups in the para- position. The substrate scope, in terms of the alkoxy group, was studied and the nature of the catalyst counter-ion was shown to have a profound effect on the efficiency of isotope exchange. Finally, the observed chemoselectivity was rationalized by rate studies and theoretical calculations, and this insight was applied to the selective labelling of benzoate esters bearing a second directing group

    The Natural Product Lepidiline A as an N-Heterocyclic Carbene Ligand Precursor in Complexes of the Type [Ir(cod)(NHC)PPh3)]X: Synthesis, Characterisation, and Application in Hydrogen Isotope Exchange Catalysis

    Get PDF
    A range of iridium(I) complexes of the type [Ir(cod)(NHC)PPh3)]X are reported, where the N-heterocyclic carbene (NHC) is derived from the naturally-occurring imidaozlium salt, Lepidiline A (1,3-dibenzyl-4,5-dimethylimidazolium chloride). A range of complexes were prepared, with a number of NHC ligands and counter-ions, and various steric and electronic parameters of these complexes were evaluated. The activity of the [Ir(cod)(NHC)PPh3)]X complexes in hydrogen isotope exchange reactions was then studied, and compared to established iridium(I) complexes

    Vibrational and vibrational-torsional interactions in the 0–600 cm-1 region of the S1 ← S0 spectrum of p-xylene investigated with resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    Get PDF
    We assign the 0–600 cm-1 region of the S1 ← S0 transition in p-xylene using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the 0–300 cm-1 range, as well as the intense origin band there are a number of torsional and vibration-torsion (vibtor) features. The latter are discussed in more detail in an accompanying paper [Gardner et al. J. Chem. Phys. XXX, xxxxxx (2016)]. Here we focus on the origin and the 300–650 cm-1 region, where vibrational bands and some vibtor activity is observed. From the origin ZEKE spectrum we derive the ionization energy of p-xylene as 68200 ± 5 cm-1. The assignment of the REMPI spectrum is based on the activity observed in the ZEKE spectra coupled with knowledge of the vibrational wavenumbers obtained from quantum chemical calculations. We assign several isolated vibrations, and a complex Fermi resonance that is found to comprise contributions from both vibrations and vibtor levels, and we examine this via a two-dimensional ZEKE (2D-ZEKE) spectrum. A number of the vibrational features in the REMPI and ZEKE spectra of p-xylene that have been reported previously are reassigned and now largely consist of totally-symmetric contributions. We briefly discuss the appearance of non-Franck-Condon allowed transitions. Finally, we find remarkably similar spectral activity to that in the related disubstituted benzenes, para-difluorobenzene and para-fluorotoluene

    Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    Get PDF
    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-dimethylbenzene) are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0–350 cm 1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In an accompanying paper [Tuttle et al. J. Chem. Phys. XXX, xxxxxx (2016)], we examine the 350–600 cm 1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [3,3]D2h and we include the symmetry operations, character table and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here

    Vibrations of the S1 state of fluorobenzene-h5 and fluorobenzene-d5 via resonance-enhanced multiphoton ionization (REMPI) spectroscopy

    Get PDF
    We report resonance-enhanced multiphoton ionization spectra of the isotopologues fluorobenzeneh5 and fluorobenzene-d5. By making use of quantum chemical calculations, the changes in the wavenumber of the vibrational modes upon deuteration are examined. Additionally, the mixing of vibrational modes both between isotopologues and also between the two electronic states is discussed. The isotopic shifts lead to dramatic changes in the appearance of the spectrum as vibrations shift in and out of Fermi resonance. Assignments of the majority of the fluorobenzene-d5 observed bands are provided, aided by previous results on fluorobenzene-h5
    corecore