37 research outputs found

    Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy

    Get PDF
    Alcohol ingestion decreases postexercise rates of muscle protein synthesis, but the mechanism(s) (e.g., increased protein breakdown) underlying this observation is unknown. Autophagy is an intracellular “recycling” system required for homeostatic substrate and organelle turnover; its dysregulation may provoke apoptosis and lead to muscle atrophy. We investigated the acute effects of alcohol ingestion on autophagic cell signaling responses to a bout of concurrent (combined resistance- and endurance-based) exercise. In a randomized crossover design, eight physically active males completed three experimental trials of concurrent exercise with either postexercise ingestion of alcohol and carbohydrate (12 ± 2 standard drinks; ALC-CHO), energy-matched alcohol and protein (ALC-PRO), or protein (PRO) only. Muscle biopsies were taken at rest and 2 and 8 h postexercise. Select autophagy-related gene (Atg) proteins decreased compared with rest with ALC-CHO (P < 0.05) but not ALC-PRO. There were parallel increases (P < 0.05) in p62 and PINK1 commensurate with a reduction in BNIP3 content, indicating a diminished capacity for mitochondria-specific autophagy (mitophagy) when alcohol and carbohydrate were coingested. DNA fragmentation increased in both alcohol conditions (P < 0.05); however, nuclear AIF accumulation preceded this apoptotic response with ALC-CHO only (P < 0.05). In contrast, increases in the nuclear content of p53, TFEB, and PGC-1α in ALC-PRO were accompanied by markers of mitochondrial biogenesis at the transcriptional (Tfam, SCO2, and NRF-1) and translational (COX-IV, ATPAF1, and VDAC1) level (P < 0.05). We conclude that alcohol ingestion following exercise triggers apoptosis, whereas the anabolic properties of protein coingestion may stimulate mitochondrial biogenesis to protect cellular homeostasis

    Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise

    Get PDF
    Purpose Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. Methods In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO2peak), or low-intensity cycling with BFR (15 min, 40% VO2peak). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. Results END increased ULK1Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPKThr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). Conclusion A single bout of low-intensity cycling with BFR is insufficient to induce intracellular “stress” responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling

    Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Get PDF
    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise

    An AMPKa2-specific phospho-switch controls lysosomal targeting for activation

    Get PDF
    AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy

    A novel small molecule inhibitor of human Drp1

    Get PDF
    Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    Autophagy and Protein Turnover Responses to Exercise-Nutrient Interactions in Human Skeletal Muscle

    Get PDF
    Skeletal muscle is a dynamic tissue comprising the largest protein reservoir of the human body with a rate of turnover of ~1-2% per day. Protein turnover is regulated by the coordination of intracellular systems regulating protein synthesis and breakdown that converge in a spatiotemporal manner on lysosomal organelles responsible for integrating a variety of contractile and nutritional stimuli. One such system, autophagy, which literally means to ‘self-eat,’ involves capturing of cellular material for deliver to, and disintegration by, the lysosome. The autophagic ‘cargo’ is subsequently recycled for use in synthetic reactions and thus maintenance of protein balance. As a dynamic system, autophagy responds to intracellular perturbations to homeostasis elicited by exercise and changes in nutrient availability in an attempt to restore energy balance. However, little is known regarding how autophagy is modulated following exercise in response to changes in nutrient availability. This thesis is comprised of three independent studies in which the effects of divergent forms of exercise-nutrient interactions are investigated in relation to autophagy-mediated protein turnover processes in skeletal muscle. Study 1 assessed whether resistance-based exercise undertaken following a short-term period of dietary energy restriction activates autophagic cell signalling, and whether high-protein availability during recovery from exercise attenuates the autophagic response. This latter supposition was based on the anabolic properties of amino acids that may temporarily repress autophagy in vitro. In contrast to one of the original hypotheses, protein availability promoted the largest accumulation of proteins implicated in the induction of skeletal muscle autophagy and thus, turnover-remodelling, which is required to support the elevated synthetic demands imposed by resistance exercise contraction in a state of energy deficit. Study 2 investigated the effects of alcohol intoxication during recovery from vigorous exercise on autophagy and whether concomitant protein availability could ‘rescue’ alcohol-exposed muscle tissue from the toxic effects of alcohol metabolism. It was hypothesised that the largest autophagic response (e.g., the accumulation of specific autophagy-related proteins in different subcellular compartments) would be seen when alcohol with carbohydrate, but not protein, was co-ingested, thereby promoting greater rates of protein degradation. However, the results from this study showed that alcohol availability consistently attenuated the abundance of numerous autophagy-related proteins that culminated in cell death responses. Protein availability, in part, through a compensatory induction of mitochondrial biogenesis, facilitated ‘sparing’ of the alcohol-exposed tissue from these deleterious effects of alcohol metabolism, thus revealing the intrinsic anti-apoptotic effects of exogenous protein. While excess alcohol consumption should be avoided following sport and/or exercise training, protein co-ingestion may relieve some of the intracellular damage and facilitate recovery-adaption. Study 3 investigated the impact of acutely elevating systemic fatty acid availability and its impact on skeletal muscle protein turnover. Participants received either a lipid infusion with or without the addition of exercise, or a saline control, and following these infusions ingested a bolus amount of protein. It was hypothesised that lipid availability would attenuate markers of cellular anabolism (i.e., translation initiation) that would be ameliorated by exercise. Whereas the lipid infusion alone induced an elevated autophagic flux, combining the lipid infusion with exercise inhibited this activation of autophagy and, in response to protein ingestion, promoted the largest intracellular anabolic protein translational response. In addition, exercise performed during the lipid infusion resulted in a novel mitochondria-specific autophagic response independent of canonical routes of autophagic degradation. Therefore, the anabolic sensitivity of skeletal muscle to protein ingestion, despite high-circulating free fatty acids, was ‘rescued’ by strenuous exercise performed during this infusion and was associated with the disposal of mitochondrial organelles presumably damaged by lipid availability. Combining strenuous exercise with high-protein availability in the context of excess circulating lipids is a powerful stimulus for promoting muscle protein turnover-remodelling. Taken collectively, the results from this thesis demonstrate that nutrient availability alters the responsiveness of skeletal muscle protein turnover, in particular autophagy, to exercise stimuli. The optimal nutrient ‘pairing’ with exercise in regards to optimising muscle quality and quantity for athletes and non-athletes alike, in the context of dietary energy restriction or excess alcohol and fat availability, is the consumption of high-quality sources of protein

    The relationship between exercise, nutrition and type 2 diabetes

    No full text
    Type 2 diabetes mellitus and its precursor, insulin resistance, are metabolic disease states characterized by impaired regulation in the delivery, transport, and/or storage of energy substrates (primarily carbohydrate- and fat-based fuels). A hallmark feature of patients with type 2 diabetes is prolonged periods of hyperglycemia due to a decreased responsiveness of metabolically active peripheral tissues to the actions of insulin (i.e. metabolic inflexibility). Accordingly, efforts to modify skeletal muscle substrate handling in type 2 diabetes patients so that the capacity for fat oxidation and metabolic flexibility is improved should be a primary goal for the treatment of these disorders. Two potent interventions for improving whole-body glucose homeostasis are exercise and diet. A single bout of either resistance or endurance exercise reduces the prevalence and duration of hyperglycemic excursions in patients with type 2 diabetes, an effect lasting well into the next day. With regard to diet, the carbohydrate content of a meal and the glycemic index (GI) of the carbohydrate consumed are both major determinants of the postprandial glycemic response. Diets containing high-GI carbohydrates have been shown to be independent risk factors for type 2 diabetes onset, while in obese insulin-resistant individuals, low-GI diets are effective for inducing both weight loss and improving insulin action and glucose tolerance. The implementation of physical activity and dietary modifications are effective low-cost treatment options for controlling hyperglycemic episodes in patients with type 2 diabetes

    Exercise-induced skeletal muscle signaling pathways and human athletic performance

    No full text
    Skeletal muscle is a highly malleable tissue capable of altering its phenotype in response to external stimuli including exercise. This response is determined by the mode, (endurance- versus resistance-based), volume, intensity and frequency of exercise performed with the magnitude of this response-adaptation the basis for enhanced physical work capacity. However, training-induced adaptations in skeletal muscle are variable and unpredictable between individuals. With the recent application of molecular techniques to exercise biology, there has been a greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses. This review summarizes the molecular and cellular events mediating adaptation processes in skeletal muscle in response to exercise. We discuss established and novel cell signaling proteins mediating key physiological responses associated with enhanced exercise performance and the capacity for reactive oxygen and nitrogen species to modulate training adaptation responses. We also examine the molecular bases underpinning heterogeneous responses to resistance and endurance exercise and the dissociation between molecular ‘markers’ of training adaptation and subsequent exercise performance

    Effects of skeletal muscle energy availability on protein turnover responses to exercise

    Get PDF
    Skeletal muscle adaptation to exercise training is a consequence of repeated contraction-induced increases in gene expression that lead to the accumulation of functional proteins whose role is to blunt the homeostatic perturbations generated by escalations in energetic demand and substrate turnover. The development of a specific ‘exercise phenotype’ is the result of new, augmented steady-state mRNA and protein levels that stem from the training stimulus (i.e. endurance or resistance based). Maintaining appropriate skeletal muscle integrity to meet the demands of training (i.e. increases in myofibrillar and/or mitochondrial protein) is regulated by cyclic phases of synthesis and breakdown, the rate and turnover largely determined by the protein's half-life. Cross-talk among several intracellular systems regulating protein synthesis, breakdown and folding is required to ensure protein equilibrium is maintained. These pathways include both proteasomal and lysosomal degradation systems (ubiquitin-mediated and autophagy, respectively) and the protein translational and folding machinery. The activities of these cellular pathways are bioenergetically expensive and are modified by intracellular energy availability (i.e. macronutrient intake) and the ‘training impulse’ (i.e. summation of the volume, intensity and frequency). As such, exercise–nutrient interactions can modulate signal transduction cascades that converge on these protein regulatory systems, especially in the early post-exercise recovery period. This review focuses on the regulation of muscle protein synthetic response-adaptation processes to divergent exercise stimuli and how intracellular energy availability interacts with contractile activity to impact on muscle remodelling
    corecore