52 research outputs found

    Centrifuge Modelling With Transparent Soil and Laser Aided Imaging

    Get PDF
    Transparent synthetic soils have been developed as a soil surrogate to enable internal visualization of geotechnical processes in physical models. While significant developments have been made to enhance the methodology and capabilities of transparent soil modelling, the technique is not yet exploited to its fullest potential. Tests are typically conducted at 1 g in small bench size models, which invokes concerns about the impact of scale and stress level observed in previously reported work. This paper recognized this limitation and outlines the development of improved testing methodology whereby the transparent soil and laser aided imaging technique are translated to the centrifuge environment. This has a considerable benefit such that increased stresses are provided, which better reflect the prototype condition. The paper describes the technical challenges associated with implementing this revised experimental methodology, summarizes the test equipment/systems developed, and presents initial experimental results to validate and confirm the successful implementation and scaling of transparent soil testing to the high gravity centrifuge test environment. A 0.6 m wide prototype strip foundation was tested at two scales using the principle of “modelling of models,” in which similar performance was observed. The scientific developments discussed have the potential to provide a step change in transparent soil modelling methodology, crucially providing more representative stress conditions that reflect prototype conditions, while making a broader positive contribution to physical modelling capabilities to assess complex soil–structure boundary problems

    Quantification of Optical Clarity of Transparent Soil Using the Modulation Transfer Function

    Get PDF
    Transparent synthetic soils have been developed as a soil surrogate to enable internal visualization of geotechnical processes in physical models. Transparency of the soil dictates the overarching success of the technique; however, despite this fundamental requirement, no quantitative framework has yet been established to appraise the visual quality of transparent soil. Previous approaches to assess and optimize transparency quality included an eye chart assessment method, although this approach is highly subjective and operator-dependent. In this paper, an independent method for quantitatively assessing the optical quality of transparent soil is proposed based on the optical calibration method, Modulation Transfer Function (MTF). The work explores this hypothesis and assesses the potential for MTF to quantify the optical quality of transparent soils for a number of aspects including (i) optimum oil blend ratio, (ii) depth of viewing plane, and (iii) temperature. The results confirmed that MTF offers a robust and reliable method to provide an independent quantitative measure of the optical quality of transparent soil. The impact of reduced soil transparency and the ability to track speckle patterns—thus accuracy and precision of displacement measurement—was correlated with MTF to evaluate the permissible viewing depth of transparent soil

    Transparent soil to model thermal processes: An energy pile example

    Get PDF
    Managing energy resources is fast becoming a crucial issue of the 21st century, with groundbased heat exchange energy structures targeted as a viable means of reducing carbon emissions associated with regulating building temperatures. Limited information exists about the thermo-dynamic interactions of geothermal structures and soil owing to the practical constraints of placing measurement sensors in proximity to foundations; hence, questions remain about their long-term performance and interaction mechanics. An alternative experimental method using transparent soil and digital image analysis was proposed to visualize heat flow in soil. Advocating the loss of optical clarity as a beneficial attribute of transparent soil, this paper explored the hypothesis that temperature change will alter its refractive index and therefore progressively reduce its transparency, becoming more opaque. The development of the experimental methodology was discussed and a relationship between pixel intensity and soil temperature was defined and verified. This relationship was applied to an energy pile example to demonstrate heat flow in soil. The heating zone of influence was observed to extend to a radial distance of 1.5 pile diameters and was differentiated by a visual thermal gradient propagating from the pile. The successful implementation of this technique provided a new paradigm for transparent soil to potentially contribute to the understanding of thermo-dynamic processes in soil

    Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite

    No full text
    Water-vapor sorption experiments were conducted to quantify bulk volume change of compacted expansive clay specimens resulting from interlayer hydration and dehydration in the crystalline swelling regime. Effects of interlayer cation type and pore fabric are examined by comparing results for natural Na-smectite and Ca-smectite specimens compacted over a range of initial bulk densities. Transitions in interlayer hydration states are reflected in the general shape of the sorption isotherms and corresponding relationships between humidity and volume change. Hysteresis is observed in both the sorption and volume-change response. Volume change for Ca-smectite specimens is significantly greater than for Na-smectite over the entire range of packing densities considered. Loosely compacted specimens result in less volume change for both clays. Results are interpreted in light of a conceptual framework based on previous SEM and TEM observations of particle and pore fabric for Na and Ca smectite at high suctions. A pore-scale microstructural model is developed to quantitatively assess changes in interlayer and interparticle void volume during hydration. Modeling suggests that the relatively small volume changes observed for Na-smectite are attributable to a reduction of interparticle void volume as expanding quasicrystals encroach into surrounding larger-scale pores. Volume change hysteresis is attributed to unrecovered alterations in interparticle fabric required to accommodate the swelling process. The results provide new insight to address volume change upscaling, hysteresis, and the general evolution of bi-modal pore fabric during crystalline swelling

    Porosity evolution of free and confined bentonites during interlayer hydration

    No full text
    Methods for predicting the volume change and swelling-pressure behavior of expansive clays require detailed understanding of coupled interactions between clay microstructure and macrostructure under hydraulic, thermal, and mechanical loads. In this study a suite of water-vapor sorption experiments was conducted using compacted bentonites hydrated in controlled relative humidity (RH) environments maintained under free and constrained volume-change boundary conditions. Emphasis was placed on examining the influences of compaction and predominant exchange cation on the water uptake, volume change, and swelling pressure response. Densely compacted specimens exhibited greater volume changes under free swelling conditions and greater swelling pressures under fully confined conditions. Water uptake, volume change, and swelling pressure were all more significant for Colorado (Ca2+/Mg2+) bentonite than forWyoming (Na+) bentonite. Plastic yielding, evident as a peak in the relationship between swelling pressure and RH, was more evident and occurred at lower RH for the Colorado bentonite. This observation was interpreted to reflect the limited capacity for interlayer swelling in Ca/Mg bentonites and corresponding structural collapse induced by the onset of water uptake in larger intra-aggregate and inter-aggregate pores. A semi-quantitative model for the evolution of clay microstructure resulting from interlayer hydration was considered to attribute the experimental observations to differences in the efficiency with which transitions in basal spacing translate to bulk volume changes and swelling pressure. Results provide additional insight and experimental evidence to more effectively model the mechanical behavior of compacted bentonites used as buffer or barrier materials in waste repository applications

    Water vapor sorption behaviour of smectite-kaolinite mixtures

    No full text
    • …
    corecore