212 research outputs found

    Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease

    Get PDF
    BACKGROUND: The order and magnitude of pathologic processes in Alzheimer's disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimer's disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease. METHODS: In this prospective, longitudinal study, we analyzed data from 128 participants who underwent baseline clinical and cognitive assessments, brain imaging, and cerebrospinal fluid (CSF) and blood tests. We used the participant's age at baseline assessment and the parent's age at the onset of symptoms of Alzheimer's disease to calculate the estimated years from expected symptom onset (age of the participant minus parent's age at symptom onset). We conducted cross-sectional analyses of baseline data in relation to estimated years from expected symptom onset in order to determine the relative order and magnitude of pathophysiological changes. RESULTS: Concentrations of amyloid-beta (Aβ)(42) in the CSF appeared to decline 25 years before expected symptom onset. Aβ deposition, as measured by positron-emission tomography with the use of Pittsburgh compound B, was detected 15 years before expected symptom onset. Increased concentrations of tau protein in the CSF and an increase in brain atrophy were detected 15 years before expected symptom onset. Cerebral hypometabolism and impaired episodic memory were observed 10 years before expected symptom onset. Global cognitive impairment, as measured by the Mini-Mental State Examination and the Clinical Dementia Rating scale, was detected 5 years before expected symptom onset, and patients met diagnostic criteria for dementia at an average of 3 years after expected symptom onset. CONCLUSIONS: We found that autosomal dominant Alzheimer's disease was associated with a series of pathophysiological changes over decades in CSF biochemical markers of Alzheimer's disease, brain amyloid deposition, and brain metabolism as well as progressive cognitive impairment. Our results require confirmation with the use of longitudinal data and may not apply to patients with sporadic Alzheimer's disease. (Funded by the National Institute on Aging and others; DIAN ClinicalTrials.gov number, NCT00869817.)

    Partial Volume Correction in Quantitative Amyloid Imaging.

    Get PDF
    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition

    Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease

    Get PDF
    Introduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure

    Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    Get PDF
    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease

    Get PDF
    Objective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease. Results: Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMHs. APOE ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug-related CMHs

    Video Education on Hereditary Breast and Ovarian Cancer (HBOC) for Physicians: an Interventional Study

    No full text
    The National Comprehensive Cancer Network (NCCN) guidelines are the gold standard in hereditary cancer risk assessment, screening, and treatment. A minority of physicians follow NCCN guidelines for BRCA1 or BRCA2 mutations. This study assesses the impact of an interventional educational program on HBOC in terms of knowledge. Physicians were sent an invite to join either an intervention survey (web-training offered prior to the knowledge survey) or control survey (web-training offered after the knowledge survey). Sixty-nine physicians in the intervention arm and 67 physicians in the control arm completed the survey. The interventional group regularly answered items correctly at a higher frequency than the control group. For example, 64.71% (n = 44) of physicians in the intervention group knew that multi-gene testing does not have to include only highly penetrant genes compared to 32.84% (n = 22) of the control group (p \u3c 0.01). Similar results were seen with other specific survey items. The current study is important in that it shows web-based education to be a feasible and effective modality for training on hereditary breast cancer. This type of education may be incorporated into CME programs and can be used as a foundation for further studies as well

    Steering Committee surveys.

    No full text
    BackgroundIn biomedical research, it is often desirable to seek consensus among individuals who have differing perspectives and experience. This is important when evidence is emerging, inconsistent, limited, or absent. Even when research evidence is abundant, clinical recommendations, policy decisions, and priority-setting may still require agreement from multiple, sometimes ideologically opposed parties. Despite their prominence and influence on key decisions, consensus methods are often poorly reported. Our aim was to develop the first reporting guideline dedicated to and applicable to all consensus methods used in biomedical research regardless of the objective of the consensus process, called ACCORD (ACcurate COnsensus Reporting Document).Methods and findingsWe followed methodology recommended by the EQUATOR Network for the development of reporting guidelines: a systematic review was followed by a Delphi process and meetings to finalize the ACCORD checklist. The preliminary checklist was drawn from the systematic review of existing literature on the quality of reporting of consensus methods and suggestions from the Steering Committee. A Delphi panel (n = 72) was recruited with representation from 6 continents and a broad range of experience, including clinical, research, policy, and patient perspectives. The 3 rounds of the Delphi process were completed by 58, 54, and 51 panelists. The preliminary checklist of 56 items was refined to a final checklist of 35 items relating to the article title (n = 1), introduction (n = 3), methods (n = 21), results (n = 5), discussion (n = 2), and other information (n = 3).ConclusionsThe ACCORD checklist is the first reporting guideline applicable to all consensus-based studies. It will support authors in writing accurate, detailed manuscripts, thereby improving the completeness and transparency of reporting and providing readers with clarity regarding the methods used to reach agreement. Furthermore, the checklist will make the rigor of the consensus methods used to guide the recommendations clear for readers. Reporting consensus studies with greater clarity and transparency may enhance trust in the recommendations made by consensus panels.</div

    ACCORD checklist.

    No full text
    BackgroundIn biomedical research, it is often desirable to seek consensus among individuals who have differing perspectives and experience. This is important when evidence is emerging, inconsistent, limited, or absent. Even when research evidence is abundant, clinical recommendations, policy decisions, and priority-setting may still require agreement from multiple, sometimes ideologically opposed parties. Despite their prominence and influence on key decisions, consensus methods are often poorly reported. Our aim was to develop the first reporting guideline dedicated to and applicable to all consensus methods used in biomedical research regardless of the objective of the consensus process, called ACCORD (ACcurate COnsensus Reporting Document).Methods and findingsWe followed methodology recommended by the EQUATOR Network for the development of reporting guidelines: a systematic review was followed by a Delphi process and meetings to finalize the ACCORD checklist. The preliminary checklist was drawn from the systematic review of existing literature on the quality of reporting of consensus methods and suggestions from the Steering Committee. A Delphi panel (n = 72) was recruited with representation from 6 continents and a broad range of experience, including clinical, research, policy, and patient perspectives. The 3 rounds of the Delphi process were completed by 58, 54, and 51 panelists. The preliminary checklist of 56 items was refined to a final checklist of 35 items relating to the article title (n = 1), introduction (n = 3), methods (n = 21), results (n = 5), discussion (n = 2), and other information (n = 3).ConclusionsThe ACCORD checklist is the first reporting guideline applicable to all consensus-based studies. It will support authors in writing accurate, detailed manuscripts, thereby improving the completeness and transparency of reporting and providing readers with clarity regarding the methods used to reach agreement. Furthermore, the checklist will make the rigor of the consensus methods used to guide the recommendations clear for readers. Reporting consensus studies with greater clarity and transparency may enhance trust in the recommendations made by consensus panels.</div
    • …
    corecore