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Abstract Introduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly
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used to estimate neuronal injury in Alzheimer’s disease (AD). Here, we evaluate the utility of dy-
namic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal
injury in comparison to FDG PET.
Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were
obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise,
regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between im-
ages and estimate the relationship of the imaging biomarkers with estimated time to disease progres-
sion based on family history.
Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and
FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with esti-
mated year to onset and with increasing dementia severity.
Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion
without increasing radiation exposure.
� 2018 TheAuthors. Published byElsevier Inc. on behalf of theAlzheimer’s Association. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer’s disease (AD) can be staged with biomarkers
including positron emission tomography (PET),magnetic reso-
nance imaging (MRI), and cerebrospinal fluid to detect b-amy-
loid (Ab), neurofibrillary tau tangles, and neurodegeneration
[1–3]. 11C-Pittsburgh compound B (PiB) PET is
commonly used to detect cerebral Ab burden [4,5]. 18F-
fluorodeoxyglucose (FDG) PET is an analogue of glucose
that accumulates in brain cells thus allowing visualization and
measurement of local metabolic activity. Decrease in FDG
uptake is thought to reflect local neuronal dysfunction [6] and
is used as a reliable imaging biomarker for AD diagnosis.

Models of AD pathophysiology propose a sequential pro-
gression of brain changes that are reflected by imaging ab-
normalities starting with an early increase in Ab-PET
tracer retention, followed by a decrease in glucose meta-
bolism, followed by a decrease in cortical thickness as
seen with volumetric MRI [2,7]. Imaging participants with
multiple PET tracers help characterize different stages of
the disease but is limited by cumulative radiation
exposure, greater participant burden, and increased study
costs. To address this, several recent investigations have
evaluated perfusion-weighted PET or cerebral blood flow
(CBF) as potential estimates of glucose metabolism mea-
surements [8–12]. Good spatial correlations were found
between CBF estimates and FDG, including in regions
affected by hypometabolism in symptomatic sporadic AD
[8,10,12]. The gold standard for CBF measurement is 15O-
H2O PET [13,14]; however, its 2-minute half-life prevents
its widespread use [13]. 15O-H2O has been used to validate
perfusion weighted measurements derived from PiB PET
[15] based upon influx of the PiB tracer into the brain [16]
using either the early frames of the PiB scan (ePiB) or a rela-
tive tracer influx rate (PiB-R1) [15,17]. Several studies on
sporadic AD showed that a perfusion image with ePiB, in
addition to a common Ab burden PiB image, improves
discrimination between AD pathology and other Ab- and
tau-related clinical disorders [10,18,19]. ePiB also helps
distinguish the earliest symptomatic stage of AD from
healthy controls [20]. Another study from Meyer et al.
showed that PiB-R1 and FDG images were similar in a pop-
ulation with dementia and suggested that PiB-R1 can be
used as a good surrogate for FDG [9].

To our knowledge, changes in PiB-R1 and ePiB with the
progression of the disease have not been evaluated either
cross-sectionally or longitudinally. Here, we compared
PiB-R1 and ePiB with FDG in a model of AD progression
to evaluate their utility in clinical research and trials of dy-
namic Ab PET measures as markers of neuronal injury. A
validation substudy compared PiB-R1 and ePiB with the
perfusion gold standard, 15O-H2O PET.

We focused on a population with autosomal dominant AD
(ADAD) to facilitate the evaluation of disease progression
and preclinical AD stages. ADAD is a rare familial form
of AD with early onset of clinical symptoms (typically
before 65 years old) caused by amutation in the amyloid pre-
cursor protein (APP), presenilin 1 (PS1), or presenilin 2
(PS2) genes, resulting in overproduction of Ab. These forms
of familial AD have essentially 100% penetrance and show
similar age of symptom onset in each family across genera-
tions [21]. Because the disease course is well characterized,
ADAD provides an important model for staging preclinical
AD [21]. The Dominantly Inherited Alzheimer Network
(DIAN) has described disease progression in ADAD, finding
that glucose metabolism is primarily diminished in regions
including the precuneus and inferior parietal cortices, begin-
ningw10 years before symptom onset [22]. We investigated
in an ADAD cohort from the DIAN whether PiB-R1 and
ePiB values derived from dynamic PiB PET show similar de-
clines in the parietal and temporal lobes as seen with FDG
PET, with the aim to evaluate a potential alternative to the
FDG neuronal injury marker of AD that would minimize ra-
diation exposure, experiment time, and participant burden in
the context of clinical research and trials.

2. Methods

2.1. Participants

Participants were enrolled at DIAN sites, including three
sites that performed full-dynamic PiB PET scans: Washing-
ton University, Columbia University, and University of Cal-
ifornia Los Angeles. Each site’s institutional review board
approved all study procedures. All participants or their care-
givers provided written informed consent approved by their
local institution’s review board. Standardized clinical and
imaging assessments were obtained according to DIAN
study protocols [23]. Data were from the DIAN Data Freeze
7 (May 2014) and had passed strict quality control proced-
ures. This data set included 110 participants with at least
one full-dynamic PiB PET scan available for analysis.
Sixty-five participants were mutation carriers (MCs) of the
genes APP, PS1, or PS2. Forty-five participants with an
MC parent were themselves noncarriers (NCs) and were
considered as controls (see demographics Table 1). All par-
ticipants had baseline MRI, PiB, and FDG PET scans, ge-
netic analyses, and clinical assessments using the clinical
dementia rating (CDR) with both a global score and a
more detailed CDR sum of boxes (CDR-SB) score based
on several cognitive and behavioral categories [24,25].
Longitudinal analyses were performed on a subset of 30
participants with at least one follow-up session including dy-
namic PiB and FDG scans (see demographics in Table 2). Of
the 110 participants with baseline dynamic data, 30 partici-
pants at the Washington University site additionally under-
went an 15O-H2O PET scan for CBF assessment (see
demographics in Supplementary Table S1).

2.2. Image acquisition

Standard procedures were used at all DIAN sites and
ensured consistency in the data collection [21,23]. Two



Table 1

Demographics of cross-sectional data

Parameters NC MC P value

N (%) 45 (40.9) 65 (59.1) -

Age, mean (SD) years 38.2 (10.1) 39.8 (12.0) .53

EYO, mean (SD) years 28.3 (10.6) 27.8 (11.4) .95

Education, mean (SD) 15.0 (2.8) 15.2 (2.9) .78

Male, n (%) 22 (48.9) 36 (55.4) .50

CDR . 0, n (%) 5 (11.1) 22 (33.8) .012*

MCBP . .18, n (%) 1 (2.2) 40 (61.5) 9.05 ! 10210y

MCBP value, mean (SD) 0.05 (0.1) 0.38 (0.1) 8.82 ! 10211y

Abbreviations: SD, standard deviation;NC, noncarrier;MC,mutation car-

rier; EYO, estimated year to symptom onset; CDR, clinical dementia rating.

NOTE. In the cross-sectional cohort, the 2 groups, NCs and MCs, were

similar in age, EYOs, education score, and gender. The MC group had a sig-

nificant higher proportion of participants with cognitive impairments

(CDR . 0) and amyloid deposition (MCBP . .18).

*P value , .05.
yP value , .0005.
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institutions reviewed the scanner parameters, performance,
and image quality for the MRI (Mayo Clinic in
Rochester) and for the PET (University of Michigan, see
Supplementary Fig. S1). The MRI scan consisted of a
sagittal 3D T1-weighted image, corresponding to an acceler-
ated magnetization-prepared rapid acquisition with gradient
echo (MPRAGE). The MRI was acquired on 3T scanners
with the following parameters: TR 5 23,000, TE 5 2.95,
and 1.0 ! 1.0 ! 1.2 mm3 resolution. The PiB PET scan
consisted of 70 minutes of dynamic scanning after an
w13-mCi bolus injection. The FDG PET scan started 30 mi-
nutes after an w5-mCi bolus injection and lasted 30 mi-
nutes. The 15O-H2O PET scans started after an w50-mCi
bolus injection and lasted 3 minutes.
2.3. Image processing and image analysis

For each participant, the PET images were processed
using regions of interest (ROIs) from FreeSurfer brain
segmentation software (http://surfer.nmr.mgh.harvard.edu/)
Table 2

Demographics of longitudinal data at baseline

Parameters NC MC P value

N (%) 15 (50) 15 (50) -

Age, mean (SD) years 40.5 (7.5) 41.7 (9.0) .819

EYO, mean (SD) years 23.8 (7.6) 24.2 (6.2) .983

Education, mean (SD) 14.7 (2.0) 14.9 (2.0) .831

Male, n (%) 6 (40) 10 (66.7) .272

CDR . 0, n (%) 0 7 (46.7) 9.60 ! 10203*

MCBP . .18, n (%) 1 (6.7) 12 (80) 2.29 ! 10204y

MCBP value, mean (SD) 0.09 (0.2) 0.53 (0.2) 8.98 ! 10205y

Abbreviations: SD, standard deviation; NC, noncarrier; MC, mutation

carrier; EYO, estimated year to symptom onset; CDR, clinical dementia rat-

ing; MCBP, mean cortical binding potential.

NOTE. In the longitudinal cohort, the 2 groups, NCs and MCs, were

similar in age, EYOs, education score, and gender. The MC group had a sig-

nificant higher proportion of subjects with cognitive impairments

(CDR . 0) and amyloid deposition (MCBP . .18).

*P value , .01.
yP value , .001.
as previously described [21]. The brainstem was used as
reference for PiB and FDG scans, and the whole brain was
used as reference for the 15O-H2O scans. For ROI analyses,
all the PET images were corrected for partial volume
effects using a regional point spread function [26]. Addi-
tional results from noncorrected data were shown in
Supplementary Fig. S2. A mean cortical binding potential
(MCBP) was calculated from the full-dynamic PiB scan
and used to define PiB positivity (MCBP . .18), as previ-
ously described [27]. FDG and 15O-H2O images were quan-
tified as described in previous studies [22,28]. Various spans
of sequential early frames of the PiB PET scan were summed
to obtain ePiB standardized uptake value ratio (SUVR)
images for different time frames (0 to 5, 1 to 6, 1 to 7, 1 to
8, 1 to 9, 1 to 10, and 1 to 12 minutes). The ePiB image
that best spatially correlated with FDG (ePiB 1 to
9 minutes) was used for analyses (see Supplementary
Table S2 and Fig. S3). PiB-R1 values were derived from
the full-PiB dynamic time activity curves using a simplified
reference tissue model [29] on a regional basis for each full-
dynamic PiB scan to characterize the relative perfusion for a
target region versus the reference region [30].

For each participant, voxelwise spatial correlations of the
entire brain, cortical, and subcortical deep gray were evalu-
ated between (1) the FDG and 15O-H2O images; (2) the PiB-
R1 and 15O-H2O images; and (3) ePiB and 15O-H2O. ROI
analyses were done on regions that have shown severe hypo-
metabolism in ADAD: the precuneus and the inferior and su-
perior parietal [22]. Other ROIs with relatively preserved
metabolism with ADAD pathology were also evaluated:
the lateral occipital and the hippocampus [22]. Note that
the ROIs were averaged for the left and right hemispheres.
Supplemental voxel-based morphometry analyses were per-
formed to compare gray matter differences between NC and
MC participants (Supplementary Fig. S4) [31,32].
2.4. Statistical analysis

The cross-sectional relationship of FDG, PiB-R1, and
ePiB with the estimated year to symptom onset (EYO) was
evaluated per mutation group using general linear mixed-
models on each ROI. The models included fixed effects for
mutation status, EYO, and the interaction between the muta-
tion status and EYO, and random intercepts at the family
level. The potential presence of nonlinear trajectories was
examined with the inclusion and testing of quadratic and cu-
bic EYO terms, along with appropriate interaction terms
with the mutation status indicator. Owing to the preliminary
hypothesis-generating nature of the present study, no adjust-
ment for multiple comparisons was performed.

The relationship with CDR-SB was evaluated across the
subset of 65 MCs with Spearman’s rank correlation for
each region. To evaluate the differences between FDG/
CDR-SB, PiB-R1/CDR-SB, and ePiB/CDR-SB, we
computed the 95% confidence interval for the difference in

http://surfer.nmr.mgh.harvard.edu/
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Spearman’s rank correlation coefficients based on the
percentile method using 10,000 bootstrap replications [33].

For the longitudinal analyses, to quantify the within-
person annual rate of change in FDG, PiB-R1, or ePiB, gen-
eral linear mixed models were used with random intercepts
and random slopes at the participant level, along with
random effects at the family level. Fixed effects included a
mutation status indicator, EYO at baseline, and time from
baseline. The interactions between time from baseline and
the two other fixed effects were also included.

All general linear mixed models were estimated using
restricted maximum likelihood estimation. F-test denomina-
tor degrees of freedom were approximated using the Sat-
terthwaite method [34]. All statistical analyses were
performed with SAS, version 9.4 (SAS Institute Inc.).
3. Results

3.1. Participant characteristics

The demographics of the cross-sectional cohort, the lon-
gitudinal cohort, and the 15O-H2O-PET cohort are summa-
rized in Table 1, Table 2, and Supplementary Table S1,
respectively. The NC and MC groups were similar in age,
EYO, and education for all cohorts. The two groups were
different in CDR and MCBP as expected, with higher prev-
alence of symptomatic (CDR. 0) and PiB-positive (MCBP
. .18) participants in the MC group.
3.2. Comparison of perfusion measures and FDG

To test whether FDG, PiB-R1, and ePiB displayed strong
perfusion characteristics, we compared these measures with
15O-H2O the gold standard of perfusion, regardless of the
mutation status. In the 30 DIAN participants with 15O-
H2O data, the spatial average Pearson’s r values for FDG,
PiB-R1, and ePiB were 0.69 6 0.05, 0.74 6 0.09, and
0.71 6 0.06 for the entire brain, and 0.57 6 0.04,
0.64 6 0.10, and 0.58 6 0.05 for cortical gray matter,
Fig. 1. Multi-imagingmodality in a symptomatic mutation carrier. Axial views of F

(T1w-MRI) modalities in one participant carrier of an ADAD mutation. The partic

temporal areas. PiB-R1 and ePiB image modalities showed decrease signal in mat

pattern as FDG. Abbreviations: ADAD, autosomal dominant Alzheimer’s disease; F

frames of the PiB scan; MRI, magnetic resonance imaging.
respectively. The average Pearson’s r values for the correla-
tion of PiB-R1 and 15O-H2O, and of ePiB and 15O-H2O,
were similar for the entire brain. However, the average Pear-
son’s r value for the correlation of PiB-R1 and 15O-H2O was
significantly higher than that of ePiB and 15O-H2O on the
cortical level (P , .0001). This suggests better perfusion
characteristics of the PiB-R1 values.

Visual comparison of the FDG, PiB-R1, ePiB, and Ab up-
take PiB images within participants revealed that PiB-R1
was more similar to FDG than ePiB was (Fig. 1). Across
all the 110 participants, the PiB-R1 values better correlated
with FDG in the precuneus (r 5 0.48, P , .0001) and the
inferior parietal (r 5 0.42, P , .0001) than did ePiB values
(precuneus: r 5 0.08, n.s.; inferior parietal: r 5 0.22, n.s.),
whereas ePiB correlated better in the hippocampus
(r 5 0.52, P , .0001) than did PiB-R1 (r 5 0.40,
P , .0001) (Fig. 2 and Supplementary Table S3).
3.3. Comparison of perfusion measures and MCBP

PiB is a PET ligand designed for imaging cerebral
fibrillar Ab [4]. We tested whether PiB-R1 and ePiB were
contaminated by Ab binding by evaluating their correlation
with MCBP. Across all 110 participants, the PiB-R1 values
were not correlated with MCBP for all regions. However,
ePiB positively correlated with Ab burden in several regions
(e.g., r 5 0.59, P , .0001; and r 5 0.37, P , .0001 in the
precuneus and the inferior parietal cortex, respectively,
Supplementary Fig. S5 and Supplementary Table S4). This
demonstrates that ePiB measurement displays some contam-
ination from specific binding, whereas PiB-R1 does not.
3.4. Cross-sectional evaluation with estimated year to
onset

Results for FDG, PiB-R1, and ePiB in the precuneus, the
inferior parietal, and the hippocampus were compared in
Fig. 3. Based on cross-sectional regional analyses, the MC
participants showed a significant decrease of glucose
DG, PiB-R1, ePiB (early frames), PiB (b-amyloid uptake), and T1-weighted

ipant presented a decrease of FDG cerebral glucose metabolism in parieto-

ched areas. The PiB image measuring b-amyloid burden did not show same

DG, 18F-fluorodeoxyglucose; PiB, 11C-Pittsburgh compound B; EPiB, early



Fig. 2. Comparison of the perfusionmodels versus FDG across participants. Scatter plots between PiB-R1 and FDG (top), and between ePiB and FDG (bottom)

in the precuneus (right panel), the inferior parietal (middle panel), and in the hippocampus (left panel). Across the 110 participants, the PiB-R1 values better

correlated with FDG than ePiB values did. Abbreviations: FDG, 18F-fluorodeoxyglucose; PiB, 11C-Pittsburgh compound B; EPiB, early frames of the PiB scan.
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metabolismwith EYO (all regions, P, .05), whereas the NC
participants remained stable for all regions (see Fig. 3 top
row and Supplementary Table S5). The interaction between
mutation and EYO was significant only for the precuneus
and the inferior parietal. PiB-R1 decreased for the inferior
and superior parietal (P , .05) and had a tendency to
decrease in the precuneus (P 5 .053) within the MC partic-
ipants, but the interactions were not significant (see Fig. 3
middle row and Supplementary Table S5). ePiB was signif-
icantly increased in the MC population in the precuneus
(P , .0005), the inferior parietal cortex (P , .05), and
showed positive interaction in the precuneus (see Fig. 3, bot-
tom row, and Supplementary Table S5).

3.5. Cross-sectional evaluation with clinical status

FDG SUVR inversely correlated with the severity of de-
mentia, estimated with CDR-SB, in MC participants
(n 5 65), with a strong correlation in the precuneus and
the inferior and the superior parietal (e.g., rho 5 20.47,
P , .0001 for the superior parietal, see Table 3). Similarly,
PiB-R1 values were inversely correlated with CDR-SB in
all regions except for the lateral occipital and the hippocam-
pus (e.g., rho 5 20.44, P , .0005 for the superior parietal,
see Table 3). However, ePiB SUVR values did not signifi-
cantly correlate with the CDR-SB in any regions (Table 3).
3.6. Longitudinal evaluation

Within the MC participants, the longitudinal data
demonstrated a significant decrease in FDG in all cortical
regions except the lateral occipital and hippocampus
(Supplementary Table S6). Similar results were observed
for PiB-R1 in the superior parietal, but no significant
changes were observed for ePiB within MC participants
(Supplementary Table S6). However, examining the differ-
ences in slope between MC and NC participants, these
changes observed over time in theMC group were not signif-
icantly different from the NC group in these regions for all
three measurements (Supplementary Table S6).
4. Discussion

We demonstrated that PiB-R1, a perfusion-weighted
parameter derived from PiB PET, was correlated with FDG
and decreased with disease progression in an ADAD popula-
tion. This was the first study to examine a PET measure of
perfusion with disease progression in AD to assess its utility
in clinical research and trials as a marker of neuronal injury.

For this purpose, it was necessary to confirm the reliability
of our FDGmeasurements in terms of decreases in ourADAD
cohort. Regional hypometabolism begins early in disease



Fig. 3. Progression of FDG, PiB-R1, and ePiB as a function of EYO across mutation carriers. Plots of standardized estimated difference between MC (red) and

NC (blue) participants for FDG (top), PiB-R1 (middle), and ePiB (bottom) at different cortical and subcortical levels: precuneus (left panel), inferior parietal

(middle panel), and hippocampus (right panel). FDG and ePiB evolved in opposite directions, whereas PiB-R1 and FDG showed both decrease with EYO. Ab-

breviations: FDG, 18F-fluorodeoxyglucose; PiB, 11C-Pittsburgh compound B; EPiB, early frames of the PiB scan; NC, noncarrier; MC, mutation carrier; EYO,

estimated year to symptom onset.
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progression and can be reliably measured with FDG. Using
an ADAD population, it is possible to model the relative pro-
gression of the disease with EYO [2,22]. Previous FDG
cerebral metabolism findings in ADAD showed decreases,
particularly, in the precuneus, parietal, and cingulate areas
[2,22]. In the present study, the cortical glucose metabolism
decrease was observed in MC participants in both cross-
sectional and longitudinal analyses, and this decrease was
linked to cognitive impairment. Our findings are consistent
with previous studies indicating that FDG glucose meta-
bolism is a sensitivemarker of disease progression in ADAD.

When both PiB-R1 and ePiB were compared with FDG
from the same participant and visit, PiB-R1 showed a better
spatial correlation. Across DIAN participants, the correlations
were stronger betweenPiB-R1 andFDG than ePiB andFDG in
most cortical areas. These findings demonstrate that PiB-R1 is
better correlatedwith FDGbothwithin and across subjects and
provides a closerproxyofFDGthan ePiB. In our study,PiB-R1
values showed greater similarity to FDG during disease pro-
gression than did ePiB. First, PiB-R1 decreased in regions
such as the inferior and superior parietal with EYO cross-
sectionally, whereas ePiB increased with EYO in these re-
gions. Second, decreases in PiB-R1with CDR-SBwere found
in all areas greatly affected by hypometabolism, whereas ePiB
did not show any interactionwith clinical status. Finally, longi-
tudinally, in MC participants, the PiB-R1 measures showed a
consistent trend of decrease, which reached significance in
the superior parietal, whereas ePiB did not show any signifi-
cant changes in the MC participants. The evaluated relation-
ships were stronger in parietotemporal areas than in lateral
occipital. Early in the disease course, parietotemporal areas
are first to show hypometabolism, whereas lateral occipital
areas are only affected later [22].

The counterintuitive increase in ePiB with EYO in
regions affected by hypometabolism and the lack of
decrease with cognitive impairment are consistent with



Table 3

Correlation between tracers and CDR-SB

Region

FDG and CDR-

SB

PiB-R1 and

CDR-SB

ePiB and CDR-

SB

rho P value rho P value rho P value

Precuneus 20.45 .0001 20.27 .029 0.17 .182

Inferior Parietal 20.47 ,.0001 20.28 .026 0.06 .650

Superior Parietal 20.47 ,.0001 20.44 .0002 20.04 .781

Lateral Occipital 20.26 .034 20.17 .188 0.20 .103

Hippocampus 20.30 .014 20.22 .084 20.21 .095

Abbreviations: CDR-SB, Clinical Dementia Rating–Sum of Boxes; FDG,
18F-fluorodeoxyglucose; PiB, 11C-Pittsburgh compound B; EPiB, early

frames of the PiB scan.

NOTE. Statistically significant values are listed in bold (P value ,.05).

NOTE. Evaluation of correlation between the tracers and dementia in mu-

tation carriers (n5 65). Spearman’s rank correlation coefficient (rho) and P

values are displayed for FDG and CDR-SB, ePiB, and CDR-SB, and for

PiB-R1 and CDR-SB. There were strong negative correlations between

FDG and CDR-SB, but no correlation between ePiB and CDR-SB.
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contamination by early binding to Ab deposits. This early
binding caused overestimation of perfusion in ePiB, but
not PiB-R1. Different profiles of progression were thus
observed between the two perfusion PET measures in the pre-
sent study. Chen et al. showed that ePiB and PiB-R1 displayed
similar spatial profiles [15], but the progression of the disease
was not considered. In ADAD, as the disease progresses, the
Ab deposition and thus the MCBP increase [2,22]. The
precuneus and the inferior parietal are particularly affected
by the increase of Ab deposition [22]. In the present study,
the precuneus and the inferior parietal displayed strong positive
correlation between the ePiB measure and MCBP. This may
have been due to contamination by Ab binding, as these in-
creases were not observed in PiB-R1.

Besides Ab deposition, AD progression is associated with
atrophic processes in more advanced stages [1,2,22]. PET
SUVR can be strongly affected by atrophic processes, due
to the partial volume effect [35,36]. A voxel-based
morphometry gray matter comparison between NC and
MC participants showed that very few voxels survived
correction for multiple comparisons, suggesting that the as-
sociation observed was not due to differential atrophic pro-
cess between the groups (Supplemental Fig. S4) [37]. A
correction for partial volume effects was applied to our
ePiB and PiB-R1 data to obtain a more accurate measure,
not contaminated by atrophy. Our group and other groups
have shown the importance of partial volume correction
(PVC) in PET-image processing [25,38,39]. However, the
use of PVC may lead to different outcomes in PET studies
[25,40]. Although our main ePiB (corrected) results
showed increase with ADAD progression in the MC
participants, the same noncorrected data tend to decrease
with EYO (see Supplemental Fig. S2). PiB-R1 showed the
same trend with or without PVC. Thus, PVC is not necessary
for PiB-R1, resulting in simpler processing.

The current results also support thehypothesis that decreases
in perfusion and in cerebral glucose metabolism are coupled
during the course of ADAD. However, the findings with the
15O-H2O subset data confirm that metabolic and perfusion esti-
mates are measuring two different biologic phenomena. Cere-
bral glucose metabolism may be coupled to CBF in most
conditions [41], but the regional variability and relationships
with the disease are not clear [42]. Gur et al. found in healthy
participants that few cortical areas had coupling between
CBF and cerebral glucose metabolism and most cortical and
subcortical areas were either hyperperfused or hypoperfused
relative to theirmetabolic values.Theseobservations confirmed
that those two measurements are linked but not the same [42].

The results of the present study show clear utility for us-
ing the PiB-R1 in clinical research or trials to measure phys-
iologic changes. However, two potential issues can be
encountered in practical terms: the dropout rate and the
multisite implementation. First, PiB-R1 calculation requires
a long scan session that may not be well tolerated by individ-
uals with cognitive impairment. In our study, one out of over
30 participants with follow-up assessments switched to a
short protocol. The dropout rate was not an issue in our
DIAN longitudinal cohort. Second, not all DIAN sites ac-
quired the full-dynamic scan. Some acquire only a late 30-
minute frame beginning 40 minutes after tracer injection.
Other sites additionally acquire the first 10minutes for calcu-
lating ePiB in addition to the amyloid load, attempting to
minimize study cost and participant burden. Although these
approaches decrease the amount of time a participant spends
in the scanner, the advantages of PiB-R1 over ePiB lead us to
conclude that a full-dynamic acquisition is preferable.

Some studies suggested using other Ab-PET ligands such
as florbetapir [43–45], florbetaben [11,46], or tau PET
ligands [17] to measure perfusion and compare with FDG
measurements. Further investigation using other PET tracers
could be of interest to fully assess the utility of alternative
perfusion proxies using PET tracers in an ADAD population.

These perfusion PET imaging modalities do not measure
the same feature as FDG but still possess utility for clinical
research and trials. This investigation of ePiB and PiB-R1
measures in an ADAD cohort gives a better characterization
of alternativemeasurements and their potential further appli-
cations. PiB-R1 may provide a new measure of neuronal
injury. Although the current evidence does not suggest that
PiB-R1 is a better measure of neuronal injury than FDG,
for participants already receiving a PiB PET scan for assess-
ment of Ab deposition, substitution of PiB-R1 for FDG
would minimize radiation exposure, experiment time, and
participant burden by acting as a surrogate for the FDG
scan without causing significant dropout on longitudinal
follow-up visits during clinical research and trials. Further
study evaluating the applicability of PiB-R1 in sporadic
AD and other conditions is of interest.
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RESEARCH IN CONTEXT

1. Systematic review: The literature was reviewed us-
ing PubMed. Use of PiB PET to assess perfusion in
addition to measure brain b-amyloid burden has
been recently investigated in sporadic Alzheimer’s
disease (AD).

2. Interpretation: In an autosomal dominant AD
cohort, we found that the relative tracer delivery
rate constant from full-dynamic PiB PET imaging
(PiB-R1) behaved similarly to 18F-fluorodeox-
yglucose (FDG) positron emission tomography
(PET) and decreased with dementia, whereas early
frames of PiB scans (ePiB) that has been proposed
as a surrogate for FDG PET in studies of AD did
not. This suggests that PiB-R1 is a better proxy for
FDG in autosomal dominant AD.

3. Future directions: Implementation of full-dynamic
b-amyloid PET scans may improve clinical
research in AD, as R1 and b-amyloid burden can be
extracted from the same imaging scan session,
eliminating the FDG PET session and thus
decreasing radiation exposure, participant burden,
experiment duration, and study costs.
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