5 research outputs found

    SUGAR-DIP trial: Oral medication strategy versus insulin for diabetes in pregnancy, study protocol for a multicentre, open-label, non-inferiority, randomised controlled trial

    Get PDF
    Introduction In women with gestational diabetes mellitus (GDM) requiring pharmacotherapy, insulin was the established first-line treatment. More recently, oral glucose lowering drugs (OGLDs) have gained popularity as a patient-friendly, less expensive and safe alternative. Monotherapy with metformin or glibenclamide (glyburide) is incorporated in several international guidelines. In women who do not reach sufficient glucose control with OGLD monotherapy, usually insulin is added, either with or without continuation of OGLDs. No reliable data from clinical trials, however, are available on the effectiveness of a treatment strategy using all three agents, metformin, glibenclamide and insulin, in a stepwise approach, compared with insulin-only therapy for improving pregnancy outcomes. In this trial, we aim to assess the clinical effectiveness, cost-effectiveness and patient experience of a stepwise combined OGLD treatment protocol, compared with conventional insulin-based therapy for GDM. Methods The SUGAR-DIP trial is an open-label, multicentre randomised controlled non-inferiority trial. Participants are women with GDM who do not reach target glycaemic control with modification of diet, between 16 and 34 weeks of gestation. Participants will be randomised to either treatment with OGLDs, starting with metformin and supplemented as needed with glibenclamide, or randomised to treatment with insulin. In women who do not reach target glycaemic control with combined metformin and glibenclamide, glibenclamide will be substituted with insulin, while continuing metformin. The primary outcome will be the incidence of large-for-gestational-age infants (birth weight >90th percentile). Secondary outcome measures are maternal diabetes-related endpoints, obstetric complications, neonatal complications and cost-effectiveness analysis. Outcomes will be analysed according to the intention-to-treat principle. Ethics and dissemination The study protocol was approved by the Ethics Committee of the Utrecht University Medical Centre. Approval by the boards of management for all participating hospitals will be obtained. Trial results will be submitted for publication in peer-reviewed journals

    Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability

    Get PDF
    Item does not contain fulltextIntellectual disability (ID) disorders are genetically and phenotypically highly heterogeneous and present a major challenge in clinical genetics and medicine. Although many genes involved in ID have been identified, the etiology is unknown in most affected individuals. Moreover, the function of most genes associated with ID remains poorly characterized. Evidence is accumulating that the control of gene transcription through epigenetic modification of chromatin structure in neurons has an important role in cognitive processes and in the etiology of ID. However, our understanding of the key molecular players and mechanisms in this process is highly fragmentary. Here, we identify a chromatin-modification module that underlies a recognizable form of ID, the Kleefstra syndrome phenotypic spectrum (KSS). In a cohort of KSS individuals without mutations in EHMT1 (the only gene known to be disrupted in KSS until now), we identified de novo mutations in four genes, MBD5, MLL3, SMARCB1, and NR1I3, all of which encode epigenetic regulators. Using Drosophila, we demonstrate that MBD5, MLL3, and NR1I3 cooperate with EHMT1, whereas SMARCB1 is known to directly interact with MLL3. We propose a highly conserved epigenetic network that underlies cognition in health and disease. This network should allow the design of strategies to treat the growing group of ID pathologies that are caused by epigenetic defects

    Respiratory Syncytial Virus European Laboratory Network 2022 Survey:Need for Harmonization and Enhanced Molecular Surveillance

    No full text
    Respiratory syncytial virus (RSV) is a common pathogen causing mostly cold-like symptoms, but in very young infants and elderly individuals it can lead to severe disease and even death. There are currently promising developments both in vaccine development and in therapeutics that are expected to be approved soon. To get an impression within European countries of the laboratory diagnostics and surveillance activities, in anticipation of these developments, we queried the members of the European Respiratory Syncytial Virus Laboratory Network (RSV-LabNet, under the umbrella of the PROMISE project) via an online survey. The answers from the consortium members showed scattered monitoring and the application of a broad array of techniques in the laboratories. A majority of the members expressed strong interest in harmonization and collaboration for setting up surveillance programs and the need for sharing laboratory protocols. The additional value of RSV whole-genome sequencing is broadly appreciated, but implementation requires further development and closer collaboration. The RSV-LabNet can have an important responsibility in establishing contacts and exchange of expertise and providing a platform for communication to advance diagnostics, preparedness, and surveillance.</p

    Mutations in DDHD2, Encoding an Intracellular Phospholipase A(1), Cause a Recessive Form of Complex Hereditary Spastic Paraplegia

    Get PDF
    Contains fulltext : 108770.pdf (publisher's version ) (Closed access)We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease
    corecore