515 research outputs found

    Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    Get PDF
    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given

    Thermal refraction: implications for subglacial heat flux

    Get PDF
    First published online: 12 May 2021In this study, we explore small-scale (~1 to 20 km) thermal-refractive effects on basal geothermal heat flux (BGHF) at subglacial boundaries resulting from lateral thermal conductivity contrasts associated with subglacial topography and geologic contacts. We construct a series of two-dimensional, conductive, steady-state models that exclude many of the complexities of ice sheets in order to demonstrate the effect of thermal refraction. We show that heat can preferentially flow into or around a subglacial valley depending on the thermal conductivity contrast with underlying bedrock, with anomalies of local BGHF at the ice–bedrock interface between 80 and 120% of regional BGHF and temperature anomalies on the order of ±15% for the typical range of bedrock conductivities. In the absence of bed topography, subglacial contacts can produce significant heat flux and temperature anomalies that are locally extensive (>10 km). Thermal refraction can result in either an increase or decrease in the likelihood of melting and ice-sheet stability depending on the conductivity contrast and bed topography. While our models exclude many of the physical complexities of ice behavior, they illustrate the need to include refractive effects created by realistic geology into future glacial models to improve the prediction of subglacial melting and ice viscosity.Simon Willcocks, Derrick Hasterok, Samuel Jenning

    Amperometric and spectrophotometric determination of carbaryl in natural waters and commercial formulations

    Get PDF
    The work presented describes the development and evaluation of two flow-injection analysis (FIA) systems for the automated determination of carbaryl in spiked natural waters and commercial formulations. Samples are injected directly into the system where they are subjected to alkaline hydrolysis thus forming 1-naphthol. This product is readily oxidised at a glassy carbon electrode. The electrochemical behaviour of 1-naphthol allows the development of an FIA system with an amperometric detector in which 1-naphthol determination, and thus measurement of carbaryl concentration, can be performed. Linear response over the range 1.0×10–7 to 1.0×10–5 mol L–1, with a sampling rate of 80 samples h–1, was recorded. The detection limit was 1.0×10–8 mol L–1. Another FIA manifold was constructed but this used a colorimetric detector. The methodology was based on the coupling of 1-naphthol with phenylhydrazine hydrochloride to produce a red complex which has maximum absorbance at 495 nm. The response was linear from 1.0×10–5 to 1.5×10–3 mol L–1 with a detection limit of 1.0×10–6 mol L–1. Sample-throughput was about 60 samples h–1. Validation of the results provided by the two FIA methodologies was performed by comparing them with results from a standard HPLC–UV technique. The relative deviation was <5%. Recovery trials were also carried out and the values obtained ranged from 97.0 to 102.0% for both methods. The repeatability (RSD, %) of 12 consecutive injections of one sample was 0.8% and 1.6% for the amperometric and colorimetric systems, respectively

    A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle

    Get PDF
    The robotic automation of processes is of much interest to organizations. A common use case is to automate the repetitive manual tasks (or processes) that are currently done by back-office staff through some information system (IS). The lifecycle of any Robotic Process Automation (RPA) project starts with the analysis of the process to automate. This is a very time-consuming phase, which in practical settings often relies on the study of process documentation. Such documentation is typically incomplete or inaccurate, e.g., some documented cases never occur, occurring cases are not documented, or documented cases differ from reality. To deploy robots in a production environment that are designed on such a shaky basis entails a high risk. This paper describes and evaluates a new proposal for the early stages of an RPA project: the analysis of a process and its subsequent design. The idea is to leverage the knowledge of back-office staff, which starts by monitoring them in a non-invasive manner. This is done through a screen-mousekey- logger, i.e., a sequence of images, mouse actions, and key actions are stored along with their timestamps. The log which is obtained in this way is transformed into a UI log through image-analysis techniques (e.g., fingerprinting or OCR) and then transformed into a process model by the use of process discovery algorithms. We evaluated this method for two real-life, industrial cases. The evaluation shows clear and substantial benefits in terms of accuracy and speed. This paper presents the method, along with a number of limitations that need to be addressed such that it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-

    Towards an OpenSource Logger for the Analysis of RPA Projects

    Get PDF
    Process automation typically begins with the observation of humans conducting the tasks that will be eventually automated. Sim ilarly, successful RPA projects require a prior analysis of the undergo ing processes which are being executed by humans. The process of col lecting this type of information is known as user interface (UI) logging since it records the interaction against a UI. Main RPA platforms (e.g., Blueprism and UIPath) incorporate functionalities that allow the record ing of these UI interactions. However, the records that these platforms generate lack some functionalities that large-scale RPA projects require. Besides, they are only understandable by the proper RPA platforms. This paper presents an extensible and multi-platform OpenSource UI logger that generate UI logs in a standard format. This system collects information from all the computers it is running on and sends it to a central server for its processing. Treatment of the collected information will allow the creation of an enriched UI log which can be used, among others purposes, for smart process analysis, machine learning training, the creation of RPA robots, or, being more general, for task mining .Ministerio de Economía y Competitividad TIN2016-76956-C3-2-R (POLOLAS)Junta de Andalucía CEI-12-TIC021Centro para el Desarrollo Tecnol´ogico Industrial (CDTI) P011-19/E0

    UK Housing Market: Time Series Processes with Independent and Identically Distributed Residuals

    Get PDF
    The paper examines whether a univariate data generating process can be identified which explains the data by having residuals that are independent and identically distributed, as verified by the BDS test. The stationary first differenced natural log quarterly house price index is regressed, initially with a constant variance and then with a conditional variance. The only regression function that produces independent and identically distributed standardised residuals is a mean process based on a pure random walk format with Exponential GARCH in mean for the conditional variance. There is an indication of an asymmetric volatility feedback effect but higher frequency data is required to confirm this. There could be scope for forecasting the index but this is tempered by the reduction in the power of the BDS test if there is a non-linear conditional variance process

    Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites.

    Get PDF
    Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles

    Human and value sensitive aspects of mobile app design: a Foucauldian perspective

    Get PDF
    Value sensitive concerns remain relatively neglected by software design processes leading to potential failure of technology acceptance. By drawing upon an inter-disciplinary study that employed participatory design methods to develop mobile apps in the domain of youth justice, this paper examines a critical example of an unintended consequence that created user concerns around Focauldian concepts including power, authority, surveillance and governmentality. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help reduce recidivism, and support young people’s transition towards social inclusion in society. A total of 140 participants including practitioners (n=79), and young people (n=61) contributed to the data collection via surveys, focus groups and one-one interviews. The paper contributes an important theoretically located discussion around both how co-design is helpful in giving ‘voice’ to key stakeholders in the research process and observing the risk that competing voices may lead to tensions and unintended outcomes. In doing so, software developers are exposed to theories from social science that have significant impact on their product

    Antimicrobial resistance and COVID-19: Intersections and implications

    Get PDF
    Before the coronavirus 2019 (COVID-19) pandemic began, antimicrobial resistance (AMR) was among the top priorities for global public health. Already a complex challenge, AMR now needs to be addressed in a changing healthcare landscape. Here, we analyse how changes due to COVID-19 in terms of antimicrobial usage, infection prevention, and health systems affect the emergence, transmission, and burden of AMR. Increased hand hygiene, decreased international travel, and decreased elective hospital procedures may reduce AMR pathogen selection and spread in the short term. However, the opposite effects may be seen if antibiotics are more widely used as standard healthcare pathways break down. Over 6 months into the COVID-19 pandemic, the dynamics of AMR remain uncertain. We call for the AMR community to keep a global perspective while designing finely tuned surveillance and research to continue to improve our preparedness and response to these intersecting public health challenges
    • …
    corecore