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Abstract

In this study, we explore small-scale (∼1 to 20 km) thermal-refractive effects on basal geothermal
heat flux (BGHF) at subglacial boundaries resulting from lateral thermal conductivity contrasts
associated with subglacial topography and geologic contacts. We construct a series of two-dimen-
sional, conductive, steady-state models that exclude many of the complexities of ice sheets in
order to demonstrate the effect of thermal refraction. We show that heat can preferentially
flow into or around a subglacial valley depending on the thermal conductivity contrast with
underlying bedrock, with anomalies of local BGHF at the ice–bedrock interface between 80
and 120% of regional BGHF and temperature anomalies on the order of ±15% for the typical
range of bedrock conductivities. In the absence of bed topography, subglacial contacts can pro-
duce significant heat flux and temperature anomalies that are locally extensive (>10 km). Thermal
refraction can result in either an increase or decrease in the likelihood of melting and ice-sheet
stability depending on the conductivity contrast and bed topography. While our models exclude
many of the physical complexities of ice behavior, they illustrate the need to include refractive
effects created by realistic geology into future glacial models to improve the prediction of subgla-
cial melting and ice viscosity.

Introduction

Geothermal heat flux at the base of ice sheets (BGHF) is a critical boundary constraint on ice-
sheet models because it plays a key role in the basal temperature and thermal gradients within
glaciers (Pittard and others, 2016). Accurate models of BGHF are necessary to predict subgla-
cial melting rates, flow velocities in continental ice sheets and identify regions of extremely old
ice (Larour and others, 2012a; Liefferinge and Pattyn, 2013; Pittard and others, 2016; Parrenin
and others, 2017). Despite the importance of BGHF, there are very few direct estimates aside
from a few core sites (e.g. Parrenin and others, 2017) and estimates made using subglacial lakes
(Siegert and Dowdeswell, 1996).

Heat flux at the base of the Antarctic ice sheet is poorly constrained, leading many glacial
modelers to use simple BGHF estimates to estimate temperature at the base of the Antarctic ice
sheet (Llubes and others, 2006; Larour and others, 2012b). Uncertainty in BGHF results in
subglacial temperature models that cannot accurately predict subglacial melting. While more
recent BGHF models derived from seismic tomography and Curie depth estimates are avail-
able (An and others, 2015; Martos and others, 2017; Lösing and others, 2020; Shen and others,
2020), these models are not of sufficient resolution to observe local thermal variations that may
be significant to glacial processes (Liefferinge and Pattyn, 2013). These processes include the
raising or lowering of the strain rate of ice (Goldsby and Kohlstedt, 2001), the formation of fast
sliding ice streams (Engelhardt, 2004) and the formation of subglacial lakes in regions not
defined by basic 1-D thermal gradients (Llubes and others, 2006). Furthermore, to estimate
BGHF, these geophysical models rely on simple estimates of crustal heat production and ther-
mal conductivity that are poorly constrained. In this study, we focus on the implications of
shallow differences in thermal conductivity on temperature and heat flux at the ice–bedrock
interface.

Heat moves from the lithosphere to the surface via the path of least resistance (Beardsmore
and Cull, 2001), which is predominantly vertical due to the difference in temperature between
the base of the lithosphere and the surface. Surface topography and lateral variations in com-
position cause the flow of heat to deviate from a straight path, resulting in a horizontal com-
ponent of heat flux and creating local anomalies (Lees, 1910; Lachenbruch, 1968). A prior
model for heat flux at the base of glaciers assumed the interface could be modeled as a topo-
graphic free surface (van der Veen and others, 2007). However, this assumption is physically
incorrect because it ignores refraction of heat flux and temperature at the ice–bedrock interface
as a result of a finite thermal conductivity of ice.

Thermal refraction distorts local thermal gradients in response to a contrast in thermal con-
ductivity (Fig. 1). The effects of thermal refraction have been observed and accurately modeled
within and around sedimentary basins (Stephenson and others, 2009; Fuchs and Balling,
2016). This refraction effect also has the potential to influence glacial and geothermal pro-
cesses, as refraction locally focuses heat and temperatures relative to the surrounding area.
This redistribution of heat affects viscosity due to its temperature sensitivity (Goldsby and

Downloaded from https://www.cambridge.org/core. 17 Nov 2021 at 23:31:01, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/jog.2021.38
https://doi.org/10.1017/jog.2021.38
mailto:simon.willcocks@adelaide.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/jog
https://orcid.org/0000-0003-0977-139X
https://orcid.org/0000-0002-8257-7975
https://crossmark.crossref.org/dialog?doi=10.1017/jog.2021.38&domain=pdf
https://www.cambridge.org/core


Kohlstedt, 2001) and the potential for subglacial melting.
Furthermore, this phenomenon also accounts for local heat flux
variations in the absence of subglacial topography.

In this study, we demonstrate that, with or without subglacial
topography, thermal refraction can affect the heat flux at the ice–
bedrock interface, alluding to much warmer and cooler sections
under the ice sheet. We suggest that thermal refraction creates
regions of localized high temperature and heat flux anomalies
that can raise melt potential, and may be responsible for subgla-
cial lake formation.

Background

Topographic effect

The topographic method, originally theorized by Lees (1910) and
later expanded by Lachenbruch (1968), accounts for surface heat
flux into regions of low topography and away from high topog-
raphy. van der Veen and others (2007) proposed that the heat
flux across the glacial–bedrock boundary can be described as a
free surface and modeled using a topographic method, which
they employed to describe the heat flux across the Petermann
and Jakobshavn Isbræ subglacial boundaries in Greenland.

While air is very resistive, air currents – unlike ice – can con-
vect thereby rapidly removing heat and creating a relatively con-
stant temperature along the surface topography (i.e. the
topographic effect). The result is a compression of isotherms in
the vicinity of topographic depressions and associated increase
in heat flux (Fig. 2). Beneath topographic highs, the opposite
occurs, the distance between isotherms increases and heat flows
away from the peak. The topographic model has been used by a
number of glaciological studies and site planning. For example,
in their recommendation for selection of an ice coring site,
Passalacqua and others (2018) suggest avoiding sites above sub-
glacial valleys under the assumption that heat would be drawn
into a valley and increasing the possibility of positive melting.
In a separate study by Young and others (2017), the authors
assumed topography would increase the potential for subglacial
lakes in regions of deeply incised topography.

By using the topographic method, van der Veen and others
(2007) assumed the ice–bedrock boundary can be recast as

Earth’s free surface (Fig. 2), however this assumption is incorrect.
For the topographic method to work in glacial systems, ice would
need to be much more conductive than the bedrock or convect
rapidly, both beyond what is practically possible. Earth materials –
including ice – vary in thermal conductivity due to differences in
composition, porosity and pore fluid. A conductivity contrast
between ice and bedrock can result in thermal refraction of heat
that can produce the opposite effect on heat flow above subglacial
highs and valleys as predicted by the topographic method (Fig. 2).
Therefore, thermal refractive effects must be considered for accurate
glacial and ice-sheet models.

In this study, we revisit the basal heat flux in response to sub-
glacial topography using the finite difference method, which can
account for variations in thermal conductivity.

Thermal conductivity

Ice
The thermal conductivity of Antarctic ice varies considerably as a
function of porosity and temperature (Pringle and others, 2007).
Pure ice at 0°C has a thermal conductivity of ∼2.1 W m−1 K−1

and at −50°C (typical surface temperature in East Antarctica)
ice is more conductive, 2.8 W m−1 K−1 (Paterson, 1994). In prac-
tice, the conductivity of glacial ice is lower than the pure ice limit
as air bubbles in accumulating snow are trapped as the snow com-
pacts into glacial ice. As snow compacts, it increases in both dens-
ity and thermal conductivity (Eqns (9.3) and (9.4) in Paterson,
1994). Using density data from Kuivinen and Koci (1982), we
can estimate the upper and lower bounds of glacial ice thermal
conductivity, which can be as low as 0.5 W m−1 K−1 near the sur-
face and rapidly increases with depth to that of pure ice around
200 m (Fig. 3a). Observations of sea ice conductivity compiled
by Pringle and others (2007) are consistent with this theoretical
model. A complete set of equations to estimate the conductivity
of ice with depth is provided in the Appendix.

Bedrock

The vast array of rock compositions is associated with significant
variations in thermal conductivity of about 5 W m−1 K−1

(Figs 3b, c). Porosity and pore fluid compositions further broaden
the range of conductivities in shallow bedrock. Unweathered plu-
tonic rocks have a relatively well-defined conductivity range from
1.8 W m−1 K−1 for alkali basalts up to 3.8 W m−1 K−1 for granites
(Jennings and others, 2019). By contrast sedimentary rocks have
much larger variations in conductivity ranging from 1 W m−1

K−1 for mudstones to 5.25 W m−1 K−1 for quartz-rich sandstones
(Fuchs and others, 2013). This large conductivity range for
sedimentary rocks is related to the large range of porosities and
quartz fraction. Quartz has a conductivity of 6–8 W m−1 K−1

whereas most common rock-forming minerals have conductiv-
ities < 3 W m−1 K−1.

In general, most rock types will have thermal conductivities
higher than that of ice and those with lower conductivities are
likely to be easily eroded by moving ice. In Figure 3, we compare
the thermal conductivity of ice with that of a few common igne-
ous and sedimentary rocks. The median thermal conductivity of
the rocks shown is similar to or above the asymptotic thermal
conductivity of ice, but there are a significant number of rocks
that have conductivity lower than ice. Therefore, it is important
to consider the conductivity contrast between rock and ice in
order to produce accurate models of heat flow.

Greenland and Antarctica are sufficiently large with lengthy
and diverse tectonic histories (Harley and others, 2013; White
and others, 2016). Therefore, one can reasonably expect a very
large range of rock types similar to what one may find on any

Fig. 1. Thermal refraction as a result of a conductivity contrast between ice and bed-
rock. The solid lines are for a 1-D temperature model where the underlying bedrock is
more conductive than the ice (blue), less conductive (red) and equal (black). The
dashed lines are computed for a 2-D temperature model through the center of a
Gaussian-shaped valley (same models in Fig. 5). Because we do not factor in latent
heat effects, temperatures above the melting point can be considered a melt poten-
tial (gray).
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other continent. There are some regions where sufficiently large
exposures of rocks outcrop, generally near the coasts, that can
be used to model the subsurface geology allowing one to produce
accurate models of thermal conductivity. There are some subgla-
cial basins beneath Antarctica where one can expect relatively low
thermal conductivity sediments juxtaposed against crystalline
rocks with significantly higher thermal conductivity. One may
also find that crustal sutures are regions where there are signifi-
cant contrasts in rock types and possibly conductivity. However,
there are no thermal conductivity measurements specific to
rocks exposed in Antarctica.

Some thermal studies estimate thermal conductivity using
various mixing formulae in combination with modal mineralogy.
Another possibility is the use of bulk geochemistry to estimate

thermal conductivity (Jennings and others, 2019). Bulk geochem-
istry data are advantageous as it is often widely available where
bedrock is accessible. While these techniques are physically
sound and frequently accurate (e.g. Ray and others, 2015;
Chopra and others, 2018; Fuchs and others, 2018), they require
in-depth knowledge of the bedrock and thus have limited utility
for most sub-glacial heat flux studies.

In reality, the rock types beneath much of Greenland or
Antarctica are unknown. When access to bedrock is not possible,
empirically derived covariance relationships between thermal
conductivity and other petrophysical parameters such as P-wave
velocity and density may be used to estimate thermal conductivity
(e.g. Hartmann and others, 2005; Sundberg and others, 2009).
However, such regional settings are not geographically transfer-
able as they typically depend on site-specific parameters that are
often not discernible without access to bedrock samples. A recent
study by Jennings and others (2019) developed a model to esti-
mate thermal conductivity from P-wave velocity from a global
set of 340 non-porous igneous rocks,

k(Vp) = 0.5822V2
p − 8.263Vp + 31.62, (1)

with an accuracy of 0.31 W m−1 K−1. Therefore, it may be possible
to remotely estimate the thermal conductivity of bedrock without
direct access to the geology.

Because of the broad range of geologic environments and ther-
mal conductivity contrasts possible beneath ice sheets, we have
chosen to illustrate the range of refractive effects on simplified
geologic structures rather than focus on any particular locality.

Methods

Topographic solution

The topographic method developed by Lees (1910) and
Lachenbruch (1968) uses a series of planes and slopes to compute
the topographic perturbation to the background thermal field.
However, this method is cumbersome and more difficult to
implement than an alternative formulation based on Fourier

a

b
Fig. 2. A comparison of the topographic method (red)
with the finite difference solution (blue) for a subglacial
ridge and valley. The ice layer (light blue) is assigned a
conductivity of 2 W m−1 K−1and the bedrock (light
brown) is assigned a conductivity of 3 W m−1 K−1. The
dashed lines and solid lines in (a) refer to the isotherms
and heat flux lines, respectively. The topographic model
is undefined in the ice whereas the isotherms extend
across both layers in the finite difference model. (b)
Basal heat flux anomalies for the topographic (red)
and finite difference solutions (blue). The left axis dis-
plays the normalized heat flux anomaly (Eqn (6))
whereas the right axis displays the heat flux computed
for regional heat flux of 40 mW m−2.

a

b

c

Fig. 3. (a) Models for the thermal conductivity of ice (see Appendix). (b) Distribution
of thermal conductivities for selected igneous rock types (Jennings and others, 2019,
and references therein). (c) Distribution of thermal conductivities for selected sedi-
mentary rock types (Fuchs and others, 2013).

Journal of Glaciology 877

Downloaded from https://www.cambridge.org/core. 17 Nov 2021 at 23:31:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


series proposed by Blackwell and others (1980). Both methods
assume a homogeneous thermal conductivity medium and pro-
duce similar estimates for the topographic disturbance to the
heat flow field. Therefore, due to its ease of use, we prefer the
topographic method based on Fourier series.

The topographic effect on temperature at depth for a known
temperature distribution along an uneven surface, T(x, 0), tem-
perature can be computed by

T(x, z) = T(x, 0)+ Q
kr
z

+
∑M
n=0

e−2pnz/l An cos
2pnx
l

( )
+ Bn sin

2pnx
l

( )[ ]
,

(2)

at a distance x along a profile and a depth z relative to the surface
(z(x) = 0), where Q is the regional heat flux defined in the absence
of topography, kr is the thermal conductivity of bedrock, λ is the
width of region of observation, and An and Bn are Fourier coeffi-
cients (Blackwell and others, 1980). The Fourier coefficients can
be determined by inversion of a surface temperature at a set of
known or estimated points (Henderson and Cordell, 1971). The
local (topographically perturbed) heat flux, q, is then determined
by Fourier’s law applied to the equation above in both the hori-
zontal (x̂) and vertical (ẑ) directions, i.e.
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(3)

The topographic method is attractive because it does not rely
on detailed information about the bedrock if the equations are
recast in terms of the thermal gradient, Γ =Q/kr, such that the
equations do not explicitly contain the thermal conductivity.

The topographic method fails to account for the presence of
ice and as a result will not produce an accurate refractive effect.
Therefore, we resort to solving the heat equation that incorporates
a layer of ice over bedrock using a finite difference method. To
demonstrate the impact of a glacial layer on the heat flux at the
ice–bedrock interface, we solve the 2-dimensional, steady-state
heat equation without sources,

∇k · ∇T + k∇2 T = 0, (4)

where k and T are the conductivity and temperature, respectively,
at a specific point in the medium. We solve this form of the ther-
mal diffusion equation using successive over-relaxation applied to
a finite difference approximation over a 2-D subglacial cross-
section with cell sizes of ∼0.01 × 0.01 km2 with the following
boundary conditions:

• fixed surface temperature, Ts(x);
• fixed temperature at the vertical boundaries consistent with 1-D
model; and

• fixed heat flux, Q, on the lower boundary.

To reduce the number of iterations and shorten convergence time,
we solve a coarse grid first and progressively double the resolution
until the target resolution is attained. The convergence criteria is
set to 1 × 10−3 °C for the maximum temperature change of any
cell during an iteration. To estimate heat flux, we apply
Fourier’s Law by differentiating the temperature grid and multi-
plying by thermal conductivity. We then interpolate the tempera-
ture and heat flux at the ice-rock boundary.

To extend the utility of our calculations, we recast our results
in terms of a non-dimensionalized temperature and heat flux. The
use of non-dimensional quantities is independent of the regional
heat flux and surface temperature chosen for the model and thus
do not limit our results to the specific examples demonstrated in
this study. The non-dimensionalized temperature, θ, and heat
flux, Φ at the ice–bedrock boundary are given by

u(x) = Tb(x)− Tb,1D(x)
Tb,1D(x)− Ts

, (5)

F(x) = |qb(x)|
qb,1D

, (6)

where Tb and |qb| are the magnitude of temperature and heat flux
at the boundary, and Tb,1D and qb,1D are the boundary tempera-
ture and heat flux for the 1-D case associated with each vertical
column across the section. For our models, qb,1D is equal to the
regional heat flux, Q, and Tb,1D = Ts +Q h/ki, where h is the ice
thickness.

In order to emphasize the effect of thermal refraction, we have
made a number of assumptions to the heat flux equation. The
above formulation ignores the influence of basal shear heating
that is likely to dominate in regions with significant ice transport.
In such cases, the geothermal heat flux contributions to the ice
sheet are probably insignificant. We also ignore advection within
the ice, which will affect the upper portion of the geotherm
resulting in nearly isothermal temperatures at the surface
(e.g. Dahl-Jensen and others, 1998). As a result, the top of our
models could be considered to begin at the point for which the
ice has reached a conductive thermal profile. Advection near
the base of thick ice may also have an effect and would normally
be taken into account during modeling. We also ignore latent heat
effects in instances where the models predict temperatures in
excess of the melting point of ice (e.g. Fig. 1). Such temperatures
can be considered as melt potential instead, where in reality, tem-
peratures would be fixed to the melting temperature at the base of
the ice and reducing temperatures within the overlying glacial col-
umn. Because we are simply demonstrating the effect of thermal
refraction, it is the relative – not absolute – temperature difference
that is important. The last assumption we make is that the crust
contains negligible heat generation whereas continental crust con-
tains significant radioactive heat generation that contributes to
curvature in the geotherm (Chapman, 1986). However, the effect
is small enough in the shallow Earth that it can be reasonably
ignored.

Model geometries

To demonstrate how thermal refraction effects the flow of heat in
glacial environments we construct the following models: (1) a
Gaussian-shaped valley and (2) a subglacial geologic contact
below a flat horizontal ice sheet. We have chosen these two
basic geometries because they can be easily tailored to produce
a wide range of common geologic and geomorphic features. To
prevent boundary effects on calculations, model domains were
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typically set to approximately 10 times the width and depth of the
subglacial topographic features.

Gaussian valley
A Gaussian-shaped sub-glacial valley is presented to illustrate the
range of thermal refractive effects in response to changes in ther-
mal conductivity and geometry (e.g. Fig. 4a). The valley is con-
structed by assigning a regional ice-sheet thickness, h, a width, w,
and a depth, d (Fig. 4a). The ice is assigned a uniform thermal con-
ductivity, ki, of 2 W m−1 K−1 and the bedrock conductivity is con-
stant for each model.

Subvertical geological contact
Refraction also happens where there is no topography along the
ice–bedrock interface when a geological contact juxtaposes rock
types with differing thermal conductivity (Fig. 4b). To demon-
strate this effect, we present a simple model for a geological con-
tact below the ice. The model as shown in Figure 4b can be
thought of as a fault-bounded sedimentary basin with a thickness,
d, and an acute contact angle δ measured from the horizontal. In
this case, there are two bedrock conductivities, one for the sedi-
mentary basin, ks and one for the surrounding bedrock, kb.

Results

Gaussian valley

The results of the finite difference solution are presented in
Figure 5 for a bedrock conductivity of 1.5 and 3 W m−1 K−1,
respectively. When ki > kr, heat preferentially flows into the valley
as it represents the easiest path to the surface (Fig. 5a). As a result,
the isotherms bend away from the valley creating higher tempera-
tures in the ice above the valley and lower temperatures in the
bedrock below. However, relative to a series of one-dimensional
vertical temperatures stitched across the profile, temperature is
higher both above and below the valley (Fig. 6a). The valley flanks
have anomalously low temperatures with slightly negative side
lobes. The shape of the heat flux anomaly is similar to the tem-
perature anomaly (Fig. 6b).

When the conductivity contrast is reversed, ki < kr, the heat
flux and temperature anomalies both reverse polarity (Fig. 5).
In this scenario, the isotherms bend toward the valley as heat
flows around the valley.

Refraction can reduce or increase the difference between the
valley flank and valley base temperatures, but temperatures will
always be higher at the valley base than the flanks as a result of
a positive thermal gradient with depth. However, the non-

dimensionalized heat flux anomaly is related to an increase or
decrease in temperature with respect to the vertical 1D tempera-
ture field, which preserves the sign of the absolute heat flux
anomaly.

The magnitude of the basal temperature and basal heat flux
anomalies vary smoothly as a function of the thermal conductiv-
ity contrast between the ice and rock (Fig. 6). For the bedrock
conductivities chosen for this model, the basal temperature anom-
alies range from −0.2 to 0.3. The basal heat flux anomalies can
vary between 0.7 and 1.3 as a fraction of the regional BGHF.
However, this range is probably more extreme than most settings
beneath thick ice, which are more likely to range from −0.15 to
0.15 for basal temperature anomalies and from 0.8 to 1.1 for
basal heat flux anomalies (Figs 6b, d).

The geometry of the Gaussian basin has an effect on the basal
thermal anomalies. We computed 112 separate models with vary-
ing bedrock conductivity, ice thickness, valley width and valley
depth to examine the effect of geometry on the basal thermal
anomalies (Fig. 7). An increase in ice thickness and valley
width reduces the magnitude of the refraction effect. However,
the reduction in non-dimensionalized magnitude is negligible as
a function of ice thickness within the typical range for most
rock types. In contrast to the other geometric parameters, an
increase in valley depth results in an increase in the severity of
the refractive effect.

Subglacial geologic contact

For the subglacial model presented in Figure 8 with kb > ks, the
heat preferentially flows around the basin near the subvertical
contact with the bedrock. This contrast results in a decrease in
heat flux at the western edge of the basin and an increase in
heat flux through the bedrock to the west of the contact.
Isotherms however, result in higher temperatures in the basin
but lower than expected from a 1D model. On the bedrock
side, temperatures are increased relative to a 1D model. Though
the disturbances to the thermal field are largest below the ice,

a

b

Fig. 4. Model setup and parameters used to model thermal refraction. Two classes of
models are explored: (a) subglacial valley in a Gaussian shape and (b) subglacial con-
tact beneath a flat subglacial surface.

a

b

Fig. 5. Thermal refraction due to a Gaussian-shaped valley. The models are com-
puted for a thermal conductivity contrast of ice to rock, ki : kr, of (a) 2:1.5 and (b)
2:3. Geometric parameters h, w and d are used to define the ice thickness, valley
width and valley depth, which are 2, 6 and 1.5 km, respectively. Isotherms are indi-
cated by dashed lines and vector streamlines indicate the path of heat flow to the
surface. The temperature anomaly is shown in the background, computed by sub-
tracting the 1-D temperature field at each point along the profile from the model
temperatures (numerator of Eqn (6)).
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there is an effect on temperature and heat flux within the ice sheet
itself.

As with the valley model, model geometry has a significant
effect on the thermal anomalies. In Figure 9, we compute the
thermal anomalies for a variety of contact angles using the
same conductivities and basin depth as in Figure 8. The anomalies
are asymmetric as a result of the both the finite depth of the basin
and the subvertical dip. The extrema slowly change with the dip
angle except at low dip angles (<10°) that rapidly approach zero

(Fig. 8). The peak to peak distance also increases dramatically
at low angles (Figs 9c, d). The basal heat flux anomalies and
basal temperature anomalies are as large for the fault model as
similar bedrock conductivity models for the Gaussian valley.

The conductivity ratio between the basin and bedrock deter-
mines the magnitude of the thermal anomalies, not the absolute
conductivities. Figure 10 shows the results for 112 subglacial con-
tact models computed with a range of basin and bedrock thermal
conductivities. Lines of constant magnitude for both temperature

Fig. 6. Basal temperature anomalies (a, b) and basal
heat flux anomalies (c, d) across a Gaussian-shaped val-
ley as a function of bedrock thermal conductivity. The
models are computed for the same geometry in
Figures 5 a, b. Profiles at the ice–bedrock interface.
(c, d) The value of the central peak (blue) and full-width
at half maximum (orange). The value of ice conductivity,
ki, is indicated by the vertical line and gray field indi-
cates the range of conductivity for most rocks (c, d).
Non-dimensional temperature and heat flux definitions
are given in Eqn ( 6). Because of a heat flux discontinuity
at the boundary, the heat flux is estimated by averaging
the flow just above and below the boundary to reduce
numerical noise.

a b

c d

a

b d f

c e

Fig. 7. Basal temperature anomalies (a, c, e) and basal heat flux anomalies (b, d, f) across a Gaussian-shaped valley as a function of bedrock thermal conductivity
and model geometry. Geometry parameters are defined in Figure 5. Each pair of temperature heat flux plots are computed with geometry and ice conductivity
given in Figure 5. The black contour in each plot identifies the estimated zero anomaly.
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and heat flux anomalies (colors in Fig. 10) follow lines of constant
ks : kb ratio, which demonstrates that the magnitude of the refrac-
tion effect is independent of the absolute conductivities. For ks : kb
ratios <1, the maximum basal temperature anomaly and basal
heat flux anomaly are on the bedrock side of the contact whereas
the maximum and minimum swap sides when ks : kb is >1, i.e. the
positive anomaly is located on the conductive side of the contact.

Discussion

Topographic vs finite difference solutions

To compare the topographic model and the finite difference solu-
tion, we have produced a subglacial topographic profile across a
ridge and hill (Fig. 2). The topographic method is computed
with a constant surface temperature as implied by the model pro-
duced by van der Veen and others (2007), though it is unlikely to
be true. Isotherms from the topographic method are expanded
beneath the ridge and heat flux is decreased whereas below the
valley isotherms are compressed and heat flux is increased
(Fig. 2a). The overall topographic effect on heat flux predicts

large local variations of nearly 50–175% compared to the regional
heat flux (Fig. 2b).

The finite difference solution will be dependent upon the ther-
mal conductivity of the ice and bedrock, but will result in a smal-
ler disturbance to the heat flux field at the base of the ice. In
Figure 2, we use a thermal conductivity contrast of 2:3 between
the ice and bedrock layers. In this case, the polarity of the anom-
aly is reversed relative to the topographic solution and consider-
ably smaller in magnitude, creating anomalies no larger than
±25%. If the conductivity contrast is reversed, the same polarity
can be obtained for the finite difference solution, but the thermal
conductivity contrast would need to be at least 10:1 to obtain
similar magnitude anomalies as the topographic solution. Such
a case can be easily rejected as geologically unrealistic.

The polarity of thermal anomalies computed using the topo-
graphic solution can be reversed only by two unrealistic scenarios:
a negative regional heat flux or by imposing certain surface tem-
perature profiles. A negative heat flux, heat flowing from the surface
into the Earth, is generally unreasonable except as a result of diurnal
and climatic warming – both extend less than a few 10’s of meters
into the subsurface and are transient. Changing the surface tempera-
ture profile is possible, but requires a priori knowledge. If the surface
temperature is set properly, the topographic solution will be the
same as the finite difference solution only when there are no subsur-
face variations in thermal conductivity. Because we rarely know the
basal temperature along the glacier bed a priori, this is unrealistic.

The topographic solution applied to a subglacial boundary also
fails to accurately predict basal heat flux anomalies in many geo-
logical settings. The finite difference solution predicts zero ther-
mal anomalies when thermal conductivity of ice and bedrock
are equal, irrespective of the bed topography (Fig. 7). The topo-
graphic solution will also not yield a thermal anomaly where
there is no bed topography, but a lateral thermal conductivity
contrast exists. As discussed above, the finite difference solution
predicts significant thermal anomalies in such cases (Fig. 8).

Implications for ice viscosity and subglacial melting

Both the viscosity of ice sheets and the potential for melting are
effected by temperature and heat flux anomalies created by

a

Fig. 8. Thermal refraction due to a geologic contact beneath an ice sheet. The model
is computed for a thermal conductivity contrast of ice to the two bedrock layers, ki :
kb : ks, of 2:3:2.2. Geometric parameters h, d and δ are used to define the ice thick-
ness, basin depth and contact dip angle, which are 2 km, 3 km and 60°, respectively.
Isotherms are indicated by dashed lines and vector streamlines indicate the path of
heat flow to the surface. The temperature anomaly is shown in the background, com-
puted by subtracting the 1-D temperature field at each point along the profile from
the model temperatures (numerator of Eqn (6)).

a c

b d

Fig. 9. Basal temperature anomalies (a, c) and heat
basal flux anomalies (b, d) across a geologic contact
as a function of contact dip angle. The geometry is
defined in Figure 8, where dip angle is measured as
an acute angle to the surface with dip direction denoted
as to the east (right) or west (left). Although geologic
contacts can be rotated into any angle through tectonic
processes, we have labeled the common angles asso-
ciated with unrotated fault types and passive margin
slopes.
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thermal refractive effects. As our models predict basal tempera-
ture anomalies that extend into glaciers and ice sheets, we expect
an effect change to viscosity and melt potential. For instance, gla-
ciers weaken in response to heating (Perol and Rice, 2015) and
our models predict both heating and cooling in response to ther-
mal refraction effects. As a result, we expect refraction to stabilize
glaciers in some regions while weakening in others. While our dis-
cussion below focuses on the potential for melting, the effects
have a broader effect on viscosity.

Our valley models suggest that subglacial melting is easier for
some geometries and conductivity contrasts than others. Melting
will always occur most readily at the base of a valley where tem-
peratures are highest, but deep, narrow valleys where the thermal
conductivity of the bedrock is less than ice will result in enhanced
melting (Figs 1, 6, 7). Conversely, valleys where the bedrock con-
ductivity is higher than the ice will result in a reduction of melt
potential (Figs 1, 6). The latter model is in direct contrast to
the predictions by the topographic method. Because thermal con-
ductivity is generally greater in bedrock than ice, we suggest ice
sheets will more likely be stabilized by topographic depressions
(Fig. 2).

Though we have generally worked in non-dimensional units,
we can place the magnitude of temperature and heat flux anom-
alies in context. In East Antarctica and Greenland where the ice is
generally 2 km thick or above, 40–50 mWm−2 is a reasonable heat
flow for similar aged terranes (Lucazeau, 2019), and for a bedrock
conductivity of 3 W m−1 K−1 (θ = 0.1, ϕ = 0.9), the estimated heat
flux anomaly is −4 to −5 mW m−2 and temperature anomalies
2–2.5 °C. For bedrock conductivities of 4 W m−1 K−1, the anom-
alies would be twice these values. While these numbers are not
large, they could be sufficient to suppress melting and increase
viscosity. Likewise, for conductivities lower than ice, the magni-
tudes will be similar, but opposite in sign.

Subglacial ridges have thermal anomalies opposite in polarity
to subglacial valleys (Fig. 2). If melting were to occur, it would
happen on the lower slopes of the high topography where thermal
conductivity of the bedrock is less than the ice. However, the

potential is likely to be low because the basal temperature anom-
aly side lobes have relatively small magnitudes.

Whereas melting is more likely in some valley scenarios, the
mere presence of a subglacial geologic contact raises the melt
potential even in the presence of no subglacial topography. A
positive temperature anomaly is created irrespective of a higher
thermal conductivity in the bedrock or basin, always creating
the positive anomaly on the conductive side of a contact (Figs
10a, b). Furthermore, the magnitude of the temperature anomaly
is relatively constant for all but shallow dip angles <20°, raising
the potential for melting under a wide variety of geometries
(Fig. 9). Such short wavelength variations in viscosity could result
in folding of the ice sheet as it flows over such contacts (Bons and
others, 2016).

There is a potentially large difference in the spatial scale of
melting and viscosity contrasts for the cases discussed above.
Melting of ice beneath topographic lows is likely to be constrained
spatially relative to a narrow region at the base of a valley (Fig. 6).
Next to topographic highs, the spatial scale of broader but likely
to be small in magnitude. Above geologic contacts, temperatures
can remain significantly elevated for relatively large distances >10
km across strike on the high conductivity side (Fig. 9).

In most cases, the refraction effect will occur in regions where
melting will not occur but viscosity will still be affected. In regions
where melting occurs, our temperature estimates will be incorrect
because melting will keep temperatures fixed at the melting point.
In such cases, the melt rate can be estimated from the difference
between the estimated BGHF and the heat flux at the surface,

dh
dt

= kiDTe

rihL
, (7)

where ΔTe is the excess temperature (i.e. estimated temperature
anomaly above the ice’s melting point at the base of the ice
sheet), ki and ρi are the conductivity and density of the ice, h is
the thickness of the ice sheet, and L is the latent heat.

Fig. 10. Basal temperature anomalies (a, b) and basal
heat flux anomalies (c, d) across a geologic contact as
a function of bedrock and sedimentary basin conductiv-
ity. The geometry is shown in Figure 8. Normalized tem-
perature (a, b) and heat flux (c, d) extrema for a geologic
contact with 60° dip. Contours are drawn for conductiv-
ity ratios of basin (ks) to bedrock (kb). Ice conductivity is
2 W m−1 K−1 for both models. Extrema on the bedrock
side of the contact (a, c) and basin side (b, d). The
black contour in each plot identifies the estimated
zero anomaly. Each pair of temperature heat flux plots
are computed with geometry and ice conductivity
given in Figure 8.

a b

c d
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Conclusions

We demonstrate the effect of heat refraction at the base of ice
sheets in the presence of subglacial topography and above geo-
logical contacts. Previously proposed topographic-based models
for heat flux across a subglacial boundary are physically incorrect
as they make incorrect assumptions about the thermal conductiv-
ity of ice. In many cases – specifically where bedrock is more con-
ductive than ice – heat flux and temperature will be reduced above
topographic depressions, the opposite as predicted by the topo-
graphic effect. Thus, it is necessary that future thermal model
of ice sheets incorporates lateral variations in thermal conductiv-
ity and the resulting thermal refractive effect. Thermal refraction
can occur over spatial scales smaller than resolvable by remote-
sensing estimates (e.g. seismic and Curie depth), but create heat
flux and temperature anomalies sufficient to create subglacial
melting. Subglacial melt potential may actually be decreased in
valleys with thermally conductive bedrock relative to the overlying
ice sheet. Changes in melt potential can increase, and viscosity
decrease, on the conductive side of geologic contacts even when
bed topography is flat. Likewise, ice viscosity is affected by ther-
mal refraction of heat and therefore may influence ice flow veloci-
ties near geologic contacts and subglacial topographic features.
While our models of ice sheets are simplistic, they illustrate the
need to include refractive effects created by realistic geology into
future glacial models. Including thermal refractive effects will
improve the prediction of subglacial melting and ice viscosity
where heat flux is dominated by geothermal heat flux rather than
shear heating at the bed. We suggest that contrary to previous stud-
ies, topographic depressions may be regions where thick ice is more
stable than previously assumed. The implications in this study are
not limited to glacial environments but are applicable to any envir-
onment that contains variations in thermal conductivity.
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Appendix

To compute the conductivity depth relationships shown in Figure 3a, we use
the equation from Paterson (1994),

k(Wm−1K−1) = 2kir
3ri − r

, (8)

where ki is the conductivity of pure ice, ρi is the density of pure ice, and ρ is the
observed density of ice at depth. The thermal conductivity of pure ice can be
estimated using the relation by Paterson (1994),

ki(T) = 2.072exp(− 5.7× 10−3 T), (9)

where T is temperature in degrees Celsius. The density of pure ice is given by

ri(kg m−3) = 916exp(−aVT), (10)

where αV is the thermal expansivity of ice, 112 × 10−6 K−1. The temperature
can be determined from ice cores. For Figure 3a, we use the South Pole tem-
perature profile as reported by Price and others (2002),

T(◦C) = 1.83415× 109z3 − 1.59061× 108z2 + 0.00267687z− 51, (11)

where z is given in meters. The observed density of ice has been determined on
a separate core by Kuivinen and Koci (1982),

r(kgm−3) = 374.15+ 562.285(1− exp(−0.01535z)), (12)

with z in meters.
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