169 research outputs found
The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct
Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations
The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems
Coendangered hard-ticks: threatened or threatening?
The overwhelming majority of animal conservation projects are focused on vertebrates, despite most of the species on Earth being invertebrates. Estimates state that about half of all named species of invertebrates are parasitic in at least one stage of their development. The dilemma of viewing parasites as biodiversity or pest has been discussed by several authors. However, ticks were omitted. The latest taxonomic synopses of non-fossil Ixodidae consider valid 700 species. Though, how many of them are still extant is almost impossible to tell, as many of them are known only from type specimens in museums and were never collected since their original description. Moreover, many hosts are endangered and as part of conservation efforts of threatened vertebrates, a common practice is the removal of, and treatment for external parasites, with devastating impact on tick populations. There are several known cases when the host became extinct with subsequent coextinction of their ectoparasites. For our synoptic approach we have used the IUCN status of the host in order to evaluate the status of specifically associated hard-ticks. As a result, we propose a number of 63 coendangered and one extinct hard-tick species. On the other side of the coin, the most important issue regarding tick-host associations is vectorial transmission of microbial pathogens (i.e. viruses, bacteria, protozoans). Tick-borne diseases of threatened vertebrates are sometimes fatal to their hosts. Mortality associated with pathogens acquired from ticks has been documented in several cases, mostly after translocations. Are ticks a real threat to their coendangered host and should they be eliminated? Up to date, there are no reliable proofs that ticks listed by us as coendangered are competent vectors for pathogens of endangered animals
Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases
Tick-borne diseases are a potential threat that account for significant morbidity and mortality in human population worldwide. Vaccines are not available to treat several of the tick-borne diseases. With the emergence and resurgence of several tick-borne diseases, emphasis on the development of transmission-blocking vaccines remains increasing. In this review, we provide a snap shot on some of the potential candidates for the development of anti-vector vaccines (a form of transmission-blocking vaccines) against wide range of hard and soft ticks that include Ixodes, Haemaphysalis, Dermacentor, Amblyomma, Rhipicephalus and Ornithodoros species
Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition
Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme
borreliosis and tick borne encephalitis, are on the rise in Europe.
Diminishing I. ricinus populations in nature can reduce tick exposure to
humans, and one way to do so is by developing an anti-vector vaccine against
tick antigens. Currently, there is only one anti-vector vaccine available
against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in
the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a
reduction in the number of Rhipicephalus microplus ticks that successfully
feed, i.e. lower engorgement weights and a decrease in the number of
oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine
Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks,
designated as Ir86-1 and Ir86-2, were described. Here we investigated the
effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of
both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues
were expressed in a Drosophila expression system and rabbits were immunized
with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each
animal was infested with 50 female adults and 50 male adults Ixodes ricinus
and tick mortality, engorgement weights and egg mass were analyzed. Although
serum IgG titers against rIr86 proteins were elicited, no effect was found on
tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated
animals. We conclude that vaccination against Bm86 homologues in Ixodes
ricinus is not an effective approach to control Ixodes ricinus populations,
despite the clear effects of Bm86 vaccination against Rhipicephalus microplus
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst
The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a catalyst that comprises a copper complex, based on an achiral ligand, non-covalently bound to (deoxy)ribonucleic acid, which is the only source of chirality present under the reaction conditions. The chiral β-hydroxy ketone product was obtained in up to 82% enantiomeric excess. Deuterium-labelling studies demonstrated that the reaction is diastereospecific, with only the syn hydration product formed. So far, this diastereospecific and enantioselective reaction had no equivalent in conventional homogeneous catalysis
Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick
Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo
Calculation of the efficacy of vaccines against tick infestations on cattle
Articles in International JournalsCattle ticks are responsible for great economic losses in cattle farming worldwide, and their main control method,
chemicals, has been showing problems, whether resulting from the development of resistant strains of ticks or
environmental contamination. Research studies directed toward developing vaccines against ticks are emerging. One
way to evaluate those vaccines is to calculate the percentage of efficacy. The aim of this study was to analyze scientific
publications archived in PubMed that used this method of assessment and discuss the main factors that may affect its
calculation. Thus, 25 articles addressing this subject were selected. The percentage of efficacy was usually calculated
in one of two ways, with one considering the reduced fertility of eggs and the other not. The latter method may
underestimate the vaccine efficacy, and the most complete formula for calculating the efficacy reflects how much the
vaccine actually affects the infestation. In our view, the use of the complete formula for calculating the percentage of
efficacy is broader and more representative of the vaccine effect on the tick population.RESUMO - Carrapatos de bovinos são responsáveis por grandes perdas econômicas para a pecuária bovina mundial e seu principal
método de controle, o químico, vem apresentando problemas, seja pelo desenvolvimento de amostras de carrapatos
resistentes ou pela contaminação ambiental. Na tentativa de diminuir a utilização dos acaricidas, surgem pesquisas
direcionadas ao desenvolvimento de vacinas contra carrapatos. Uma maneira de avaliar essas vacinas é pelo cálculo de
percentagem de eficácia. O objetivo deste trabalho foi analisar as publicações científicas indexadas no PubMed que
utilizaram este método de avaliação e discutir os principais fatores que podem interferir no seu cálculo. Dessa maneira,
selecionaram-se 25 artigos que tratavam desse assunto. A percentagem de eficácia apareceu sendo calculada de duas
formas, uma considerando a redução da fertilidade dos ovos e a outra não. Essa última pode subestimar a eficiência da
vacina, e a fórmula de cálculo da eficácia mais completa representa o quanto da infestação a vacina realmente reduziu.
Em nosso entendimento, a utilização da fórmula completa para o cálculo da percentagem de eficácia é mais abrangente
e representativa do efeito da vacina na população de carrapatos
- …