59 research outputs found

    X-ray spectroscopy of organic materials

    Get PDF
    The radiation-induced decomposition of glycine is studied using a combination of Near Edge X-ray Absorption Fine Structure (NEXAFS) measurements and density functional theory calculations. Principal Component Analysis was used to determine the number of distinct molecules that were needed to explain the observed changes in the measured spectra, and the emerging absorption features are assigned to various product molecules through comparison with simulated spectra of several model compounds. It is clear from the experiment that the major effect of soft X-ray irradiation is the fragmentation of the molecule, primarily at the carbonyl sites. Peptide formation is shown to occur under irradiation; a condensation reaction initiated by the removal of a carbonyl oxygen is the proposed mechanism. This study utilizes a novel approach to the study of radiation damage that can occur during measurements, and suggests that it may be possible to use simulated model spectra to correct for these effects in measured spectra. A study of oligothiophene-based molecular semiconductor materials with potential applications in light-emitting and photovoltaic devices is undertaken. Angle-resolved NEXAFS measurements of the star-shaped 4(HPBT) molecules on an amorphous indium surface show a strong dichroic signal indicating a well-ordered, uniformly upright arrangement of planar molecules. The X-ray excited optical luminescence (XEOL) measurements showed several sharp features associated with vibronic splitting of the LUMO-HOMO luminescent transition. The HOMO-LUMO gap determined from the XEOL measurements is 2.28 eV; this value is in agreement with previously published optical measurements as well as with the value that is estimated from the combination of NEXAFS and X-ray emission spectroscopy (XES) measurements. Films formed from blended solutions of 4(HPBT) and the hole-transporting molecular semiconductor PCBM are shown to form a bilayer structure with the PCBM adjacent to the substrate. Annealing causes desorption of the 4(HPBT) from the surface

    Unraveling the Effect of Rh Isolation on Shallow d States of Gallium–Rhodium Alloys

    Get PDF
    In this study, we report the electronic and chemical structure of supported GaRh alloys as model systems for the active phase in supported catalytically active liquid metal solutions (SCALMS). We prepared a series of gallium–rhodium samples with different Rh contents and tracked the evolution of the sample topography and surface electronic structure via photoemission spectroscopy in combination with ab initio calculations and electron microscopy. Our results reveal a characteristic shift of the Rh 3d core levels and narrowing and shifting of the Rh 4d derived band with decreasing Rh content. Calculations show that these spectroscopic observations can be explained by the coexistence of isolated Rh atoms in random GaRh alloys and GaRh intermetallic compounds (IMCs). These results contribute to an enhancement of the fundamental understanding of the electronic surface structure of GaRh alloys, which is crucially required for apprehending and thus further exploiting the improved catalytic activity of GaRh SCALMS

    Fluoride Chemistry in Tin Halide Perovskites

    Get PDF
    Tin is the frontrunner for substituting toxic lead in perovskite solar cells. However, tin suffers the detrimental oxidation of SnII to SnIV. Most of reported strategies employ SnF2 in the perovskite precursor solution to prevent SnIV formation. Nevertheless, the working mechanism of this additive remains debated. To further elucidate it, we investigate the fluoride chemistry in tin halide perovskites by complementary analytical tools. NMR analysis of the precursor solution discloses a strong preferential affinity of fluoride anions for SnIV over SnII, selectively complexing it as SnF4. Hard X-ray photoelectron spectroscopy on films shows the lower tendency of SnF4 than SnI4 to get included in the perovskite structure, hence preventing the inclusion of SnIV in the film. Finally, small-angle X-ray scattering reveals the strong influence of fluoride on the colloidal chemistry of precursor dispersions, directly affecting perovskite crystallization

    Zn-Se-Cd-S Interlayer Formation at the CdS/Cu₂ZnSnSe₄ Thin-Film Solar Cell Interface

    Get PDF
    The chemical structure of the CdS/Cu2ZnSnSe4 (CZTSe) interface was studied by a combination of electron and X-ray spectroscopies with varying surface sensitivity. We find the CdS chemical bath deposition causes a "redistribution" of elements in the proximity of the CdS/CZTSe interface. In detail, our data suggest that Zn and Se from the Zn-terminated CZTSe absorber and Cd and S from the buffer layer form a Zn-Se-Cd-S interlayer. We find direct indications for the presence of Cd-S, Cd-Se, and Cd-Se-Zn bonds at the buffer/absorber interface. Thus, we propose the formation of a mixed Cd(S,Se)-(Cd,Zn)Se interlayer. We suggest the underlying chemical mechanism is an ion exchange mediated by the amine complexes present in the chemical bath

    Origin of Interface Limitation in Zn(O,S)/CuInS2‑Based Solar Cells

    Get PDF
    Copper indium disulfide CuInS2 grown under Cu rich conditions exhibits high optical quality but suffers predominantly from charge carrier interface recombination, resulting in poor solar cell performance. An unfavorable cliff like conduction band alignment at the buffer CuInS2 interface could be a possible cause of enhanced interface recombination in the device. In this work, we exploit direct and inverse photoelectron spectroscopy together with electrical characterization to investigate the cause of interface recombination in chemical bath deposited Zn O,S co evaporated CuInS2 based devices. Temperature dependent current voltage analyses indeed reveal an activation energy of the dominant charge carrier recombination path, considerably smaller than the absorber bulk band gap, confirming the dominant recombination channel to be present at the Zn O,S CuInS2 interface. However, photoelectron spectroscopy measurements indicate a small 0.1 eV spike like conduction band offset at the Zn O,S CuInS2 interface, excluding an unfavorable energy level alignment to be the prominent cause for strong interface recombination. The observed band bending upon interface formation also suggests Fermi level pinning not to be the main reason, leaving near interface defects as recently observed in Cu rich CuInSe2 as the likely reason for the performance limiting interface recombinatio

    Fluoridchemie in Zinn‐Halogenid‐Perowskiten

    Get PDF
    Zinn ist der Top-Favorit für den Ersatz von giftigem Blei in Perowskit-Solarzellen. Allerdings kommt es dabei verstärkt zu der unerwünschten Oxidation von SnII zu SnIV. Die herkömmlichen Verfahren verwenden SnF2 in der Perowskit-Vorläuferlösung, um die Bildung von SnIV zu verhindern. Dennoch bleibt der Wirkmechanismus des Additivs unklar. Um diesen eingehender zu erläutern, untersuchen wir die Fluoridchemie in Zinn-Halogenid-Perowskiten mit einander ergänzenden Analyseverfahren. NMR-Spektroskopie der Vorläuferlösung offenbart eine stark bevorzugte Affinität der Fluoridanionen für SnIV gegenüber SnII, wodurch dieses selektiv als SnF4 komplexiert wird. Harte Röntgenphotoelektronenspektroskopie an Dünnschichten zeigt die geringere Bereitschaft von SnF4 gegenüber SnI4, in die Perowskit-Struktur eingebaut zu werden und verhindert somit den Einschluss von SnIV in der Dünnschicht. Abschließend offenbart Röntgen-Kleinwinkelstreuung den starken Einfluss vom Fluorid auf die kolloidale Chemie der Vorläuferlösungen, der sich direkt auf die darauffolgende Kristallisation auswirkt.European Research Council (ERC)Peer Reviewe

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    corecore