758 research outputs found

    Influence of femoral component design on proximal femoral bone mass after total hip replacement : a randomized controlled trial

    Get PDF
    Background: In this randomized controlled trial (RCT), we compared bone remodeling and bone turnover between 2 total hip arthroplasty implants—the short, proximally porous-coated Tri-Lock Bone-Preservation Stem and a conventional, fully-coated Corail prosthesis—over a 2-year postoperative period. Methods: Forty-six participants received the Tri-Lock prosthesis and 40 received the Corail prosthesis. At baseline, the 2 groups had similar demographics, proximal femoral bone mineral density (BMD), bone turnover markers, radiographic canal flare index, and patient-reported outcome measure (PROM) scores. Outcomes were measured at weeks 26, 52, and 104. Results: Loss of periprosthetic bone, measured by high-sensitivity dual x-ray absorptiometry region-free analysis (DXA-RFA), was identified at the calcar and proximal-lateral aspect of the femur in both prosthesis groups (p 0.05). The adverse-event rate was also similar between the groups (p > 0.05). Conclusions: This RCT shows that prostheses intended to preserve proximal femoral bone do not necessarily perform better in this regard than conventional cementless designs. DXA-RFA is a sensitive tool for detecting spatially complex patterns of periprosthetic bone remodeling. Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence

    Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L\u2019Aquila, Italy, and implications for modelling seismic moment release

    Get PDF
    Surface slip distributions for an active normal fault in central Italy have been measured using terrestrial laser scanning (TLS), in order to assess the impact of changes in fault orientation and kinematics when modelling subsurface slip distributions that control seismic moment release. The southeastern segment of the surface trace of the Campo Felice active normal fault near the city of L\u2019Aquila was mapped and surveyed using techniques from structural geology and using TLS to define the vertical and horizontal offsets of geomorphic slopes since the last glacial maximum (15 \ub13 ka). The fault geometry and kinematics measured from 43 sites and throw/heave measurements from geomorphic offsets seen on 250 scarp profiles were analysed using a modification of the Kostrov equations to calculate the magnitudes and directions of horizontal principal strain-rates. The map trace of the studied fault is linear, except where a prominent bend has formed to link across a former left-stepping relay-zone. The dip of the fault and slip direction is constant across the bend. Throw-rates since 15 \ub13 ka decrease linearly from the fault centre to the tip, except in the location of the prominent bend where higher throw rates are recorded. Vertical coseismic offsets for two palaeoearthquake ruptures seen as fresh strips of rock at the base of the bedrock scarp also increase within the prominent bend. The principal strain-rate, calculated by combining strike, dip, slip-direction and post 15 \ub13 ka throw, decreases linearly from the fault centre towards the tip; the strain-rate does not increase across the prominent fault bend. The above shows that changes in fault strike, whilst having no effect on the principal horizontal strain-rate, can produce local maxima in throw-rates during single earthquakes that persist over the timescale of multiple earthquakes (15 \ub13 ka). Detailed geomorphological and structural investigation of active faults is therefore a critical input in order to properly define fault activity for the purpose of accurate seismic hazard assessment. We discuss the implications of modelling subsurface slip distributions for earthquake ruptures through inversion of GPS, InSAR and strong motion data using planar fault approximations, referring to recent examples on the nearby Paganica fault that ruptured in the Mw 6.3 2009 L\u2019Aquila Earthquak

    Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory

    Get PDF
    We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave functions, including average multiplicities and average momenta of constituents, structure functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data in the tables of v

    Probing the energy bands of a Bose-Einstein condensate in an optical lattice

    Full text link
    We simulate three experimental methods which could be realized in the laboratory to probe the band excitation energies and the momentum distribution of a Bose-Einstein condensate inside an optical lattice. The values of the excitation energies obtained in these different methods agree within the accuracy of the simulation. The meaning of the results in terms of density and phase deformations is tested by studying the relaxation of a phase-modulated condensate towards the ground state.Comment: 5 pages, 5 figure

    <i>Zygomaticus major</i> muscle bony attachment site:a Thiel-embalmed cadaver study

    Get PDF
    Objective: Thezygomaticus major is a principal muscle of facial expression which is engaged when smiling. The zygomaticus major origin of the zygomatic bone is often discussed relevant to its importance in the field of plastic surgery. In addition, the zygomaticus major attachment site is also significant for forensic craniofacial reconstruction, separating the cheek into frontal and lateral surfaces. However, there are discrepancies amongst published articles regarding the precise origin of the zygomaticus major muscle. The aim of this study is to investigate more distinctive and palpable landmarks as the bony attachment of the zygomaticus major. Methods: This project is the first zygomaticus major dissection study utilising Thiel embalmed cadavers. Fifty-two facial dissections were investigated in 26 Thiel embalmed bodies, bequeathed to the Centre for Anatomy and Human Identification at The University of Dundee between 2013 and 2015. Results: This study found that the origin of zygomaticus major muscle was located at the superior margin of the temporal process on the lateral surface of zygomatic bone. Moreover, the zygomaticus major muscle overlapped the anterosuperior border of the masseter muscle. One out of 52 zygomaticus major muscles presented bifurcation. Conclusion: The origin site of zygomaticus major is considered important to increase resemblance in forensic craniofacial reconstruction. Furthermore, since zygomaticus major is a salient muscle involved in facial expression, the potential effects for cosmetic/surgical procedures are also relevant to the medical field and successful surgical outcomes. The current study provided easily palpable landmarks of zygomaticus major origin site which is beneficial for both surgeons and forensic craniofacial reconstruction practitioners. © 202

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Diffusion of electrons in random magnetic fields,

    Full text link
    Diffusion of electrons in a two-dimensional system in static random magnetic fields is studied by solving the time-dependent Schr\"{o}dinger equation numerically. The asymptotic behaviors of the second moment of the wave packets and the temporal auto-correlation function in such systems are investigated. It is shown that, in the region away from the band edge, the growth of the variance of the wave packets turns out to be diffusive, whereas the exponents for the power-law decay of the temporal auto- correlation function suggest a kind of fractal structure in the energy spectrum and in the wave functions. The present results are consistent with the interpretation that the states away from the band edge region are critical.Comment: 22 pages (8 figures will be mailed if requested), LaTeX, to appear in Phys. Rev.

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
    • …
    corecore