758 research outputs found
Influence of femoral component design on proximal femoral bone mass after total hip replacement : a randomized controlled trial
Background:
In this randomized controlled trial (RCT), we compared bone remodeling and bone turnover between 2 total hip arthroplasty implants—the short, proximally porous-coated Tri-Lock Bone-Preservation Stem and a conventional, fully-coated Corail prosthesis—over a 2-year postoperative period.
Methods:
Forty-six participants received the Tri-Lock prosthesis and 40 received the Corail prosthesis. At baseline, the 2 groups had similar demographics, proximal femoral bone mineral density (BMD), bone turnover markers, radiographic canal flare index, and patient-reported outcome measure (PROM) scores. Outcomes were measured at weeks 26, 52, and 104.
Results:
Loss of periprosthetic bone, measured by high-sensitivity dual x-ray absorptiometry region-free analysis (DXA-RFA), was identified at the calcar and proximal-lateral aspect of the femur in both prosthesis groups (p 0.05). The adverse-event rate was also similar between the groups (p > 0.05).
Conclusions:
This RCT shows that prostheses intended to preserve proximal femoral bone do not necessarily perform better in this regard than conventional cementless designs. DXA-RFA is a sensitive tool for detecting spatially complex patterns of periprosthetic bone remodeling.
Level of Evidence:
Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence
Slip distributions on active normal faults measured from LiDAR and field mapping of geomorphic offsets: an example from L\u2019Aquila, Italy, and implications for modelling seismic moment release
Surface slip distributions for an active normal fault in central Italy have been measured using terrestrial laser scanning (TLS), in order to assess the impact of changes in fault orientation and kinematics when modelling subsurface slip distributions that control seismic moment release. The southeastern segment of the surface trace of the Campo Felice active normal fault near the city of L\u2019Aquila was mapped and surveyed using techniques from structural geology and using TLS to define the vertical and horizontal offsets of geomorphic slopes since the last glacial maximum (15 \ub13 ka). The fault geometry and kinematics measured from 43 sites and throw/heave measurements from geomorphic offsets seen on 250 scarp profiles were analysed using a modification of the Kostrov equations to calculate the magnitudes and directions of horizontal principal strain-rates. The map trace of the studied fault is linear, except where a prominent bend has formed to link across a former left-stepping relay-zone. The dip of the fault and slip direction is constant across the bend. Throw-rates since 15 \ub13 ka decrease linearly from the fault centre to the tip, except in the location of the prominent bend where higher throw rates are recorded. Vertical coseismic offsets for two palaeoearthquake ruptures seen as fresh strips of rock at the base of the bedrock scarp also increase within the prominent bend. The principal strain-rate, calculated by combining strike, dip, slip-direction and post 15 \ub13 ka throw, decreases linearly from the fault centre towards the tip; the strain-rate does not increase across the prominent fault bend. The above shows that changes in fault strike, whilst having no effect on the principal horizontal strain-rate, can produce local maxima in throw-rates during single earthquakes that persist over the timescale of multiple earthquakes (15 \ub13 ka). Detailed geomorphological and structural investigation of active faults is therefore a critical input in order to properly define fault activity for the purpose of accurate seismic hazard assessment. We discuss the implications of modelling subsurface slip distributions for earthquake ruptures through inversion of GPS, InSAR and strong motion data using planar fault approximations, referring to recent examples on the nearby Paganica fault that ruptured in the Mw 6.3 2009 L\u2019Aquila Earthquak
Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory
We apply Pauli-Villars regularization and discretized light-cone quantization
to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a
single-fermion truncation. Three heavy scalars, including two with negative
norm, are used to regulate the theory. The matrix eigenvalue problem is solved
for the lowest-mass state with use of a new, indefinite-metric Lanczos
algorithm. Various observables are extracted from the wave functions, including
average multiplicities and average momenta of constituents, structure
functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data
in the tables of v
Probing the energy bands of a Bose-Einstein condensate in an optical lattice
We simulate three experimental methods which could be realized in the
laboratory to probe the band excitation energies and the momentum distribution
of a Bose-Einstein condensate inside an optical lattice. The values of the
excitation energies obtained in these different methods agree within the
accuracy of the simulation. The meaning of the results in terms of density and
phase deformations is tested by studying the relaxation of a phase-modulated
condensate towards the ground state.Comment: 5 pages, 5 figure
<i>Zygomaticus major</i> muscle bony attachment site:a Thiel-embalmed cadaver study
Objective: Thezygomaticus major is a principal muscle of facial expression which is engaged when smiling. The zygomaticus major origin of the zygomatic bone is often discussed relevant to its importance in the field of plastic surgery. In addition, the zygomaticus major attachment site is also significant for forensic craniofacial reconstruction, separating the cheek into frontal and lateral surfaces. However, there are discrepancies amongst published articles regarding the precise origin of the zygomaticus major muscle. The aim of this study is to investigate more distinctive and palpable landmarks as the bony attachment of the zygomaticus major. Methods: This project is the first zygomaticus major dissection study utilising Thiel embalmed cadavers. Fifty-two facial dissections were investigated in 26 Thiel embalmed bodies, bequeathed to the Centre for Anatomy and Human Identification at The University of Dundee between 2013 and 2015. Results: This study found that the origin of zygomaticus major muscle was located at the superior margin of the temporal process on the lateral surface of zygomatic bone. Moreover, the zygomaticus major muscle overlapped the anterosuperior border of the masseter muscle. One out of 52 zygomaticus major muscles presented bifurcation. Conclusion: The origin site of zygomaticus major is considered important to increase resemblance in forensic craniofacial reconstruction. Furthermore, since zygomaticus major is a salient muscle involved in facial expression, the potential effects for cosmetic/surgical procedures are also relevant to the medical field and successful surgical outcomes. The current study provided easily palpable landmarks of zygomaticus major origin site which is beneficial for both surgeons and forensic craniofacial reconstruction practitioners. © 202
Programmable models of growth and mutation of cancer-cell populations
In this paper we propose a systematic approach to construct mathematical
models describing populations of cancer-cells at different stages of disease
development. The methodology we propose is based on stochastic Concurrent
Constraint Programming, a flexible stochastic modelling language. The
methodology is tested on (and partially motivated by) the study of prostate
cancer. In particular, we prove how our method is suitable to systematically
reconstruct different mathematical models of prostate cancer growth - together
with interactions with different kinds of hormone therapy - at different levels
of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104
Diffusion of electrons in random magnetic fields,
Diffusion of electrons in a two-dimensional system in static random magnetic
fields is studied by solving the time-dependent Schr\"{o}dinger equation
numerically. The asymptotic behaviors of the second moment of the wave packets
and the temporal auto-correlation function in such systems are investigated. It
is shown that, in the region away from the band edge, the growth of the
variance of the wave packets turns out to be diffusive, whereas the exponents
for the power-law decay of the temporal auto- correlation function suggest a
kind of fractal structure in the energy spectrum and in the wave functions. The
present results are consistent with the interpretation that the states away
from the band edge region are critical.Comment: 22 pages (8 figures will be mailed if requested), LaTeX, to appear in
Phys. Rev.
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots
We show that the parametric correlations of the conductance peak amplitudes
of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime
become universal upon an appropriate scaling of the parameter. We compute the
universal forms of this correlator for both cases of conserved and broken time
reversal symmetry. For a symmetric dot the correlator is independent of the
details in each lead such as the number of channels and their correlation. We
derive a new scaling, which we call the rotation scaling, that can be computed
directly from the dot's eigenfunction rotation rate or alternatively from the
conductance peak heights, and therefore does not require knowledge of the
spectrum of the dot. The relation of the rotation scaling to the level velocity
scaling is discussed. The exact analytic form of the conductance peak
correlator is derived at short distances. We also calculate the universal
distributions of the average level width velocity for various values of the
scaled parameter. The universality is illustrated in an Anderson model of a
disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
- …