1,025 research outputs found

    Suppressing nonsense--a surprising function for 5-azacytidine.

    Get PDF
    In this issue of EMBO Molecular Medicine, Bhuvanagiri et al report on a chemical means to convert molecular junk into gold. They identify a chemical inhibitor of a quality control pathway that is best known for its ability to clear cells of rubbish, but that in certain cases can be detrimental because it eliminates “useful” garbage. The chemical inhibitor identified by Bhuvanagiri et al perturbs Nonsense‐Mediated RNA Decay (NMD), a RNA surveillance pathway that targets mRNAs harboring premature termination codons (PTCs) for degradation (Kervestin & Jacobson, 2012)

    Evidence against memorial facilitation and context-dependent memory effects through the chewing of gum

    Get PDF
    The experiment examined the prediction that chewing gum at learning and/or recall facilitated subsequent word recall. Chewing gum at learning significantly impaired recall, indicating that the chewing of gum has a detrimental impact upon initial word encoding. In addition, a context-dependent memory effect was reported for those participants who both learned and recalled in the absence of gum, however a context dependent effect was not found with chewing gum. The findings contradict previous research

    Chewing gum and context-dependent memory: The independent roles of chewing gum and mint flavour

    Get PDF
    Two experiments independently investigated the basis of the chewing-gum induced context-dependent memory effect (Baker et al, 2004). At learning and/or recall participants either chewed flavourless gum (Experiment 1) or received mint-flavoured strips (Experiment 2). No context dependent memory effect was found with either flavourless gum or mint-flavoured strips, indicating that independently the contexts were insufficiently salient to induce the effect. This is found despite participants’ subjective ratings indicating a perceived change in state following administration of flavourless gum or mint-flavoured strips. Additionally, some preliminary evidence for a non-additive facilitative effect of receiving gum or flavour at either learning and/or recall is reported. The findings raise further concerns regarding the robustness of the previously reported context-dependent memory effect with chewing gum

    Identification of novel post-transcriptional features in olfactory receptor family mRNAs.

    Get PDF
    Olfactory receptor (Olfr) genes comprise the largest gene family in mice. Despite their importance in olfaction, how most Olfr mRNAs are regulated remains unexplored. Using RNA-seq analysis coupled with analysis of pre-existing databases, we found that Olfr mRNAs have several atypical features suggesting that post-transcriptional regulation impacts their expression. First, Olfr mRNAs, as a group, have dramatically higher average AU-content and lower predicted secondary structure than do control mRNAs. Second, Olfr mRNAs have a higher density of AU-rich elements (AREs) in their 3'UTR and upstream open reading frames (uORFs) in their 5 UTR than do control mRNAs. Third, Olfr mRNAs have shorter 3' UTR regions and with fewer predicted miRNA-binding sites. All of these novel properties correlated with higher Olfr expression. We also identified striking differences in the post-transcriptional features of the mRNAs from the two major classes of Olfr genes, a finding consistent with their independent evolutionary origin. Together, our results suggest that the Olfr gene family has encountered unusual selective forces in neural cells that have driven them to acquire unique post-transcriptional regulatory features. In support of this possibility, we found that while Olfr mRNAs are degraded by a deadenylation-dependent mechanism, they are largely protected from this decay in neural lineage cells

    Nonsense Surveillance in Lymphocytes?

    Get PDF

    Chewing gum and impasse-induced self-reported stress

    Get PDF
    An insoluble anagram task (Zellner et al., 2006) was used to investigate the proposition that chewing gum reduces self-rated stress (Scholey et al., 2009). Using a between-participants design, forty participants performed an insoluble anagram task followed by a soluble anagram task. These tasks were performed with or without chewing gum. Self-rated measures were taken at baseline, post-stressor, and post-recovery task. The insoluble anagram task was found to amplify stress in terms of increases in self-rated stress and reductions in both self-rated calmness and contentedness. However, chewing gum was found not to mediate the level of stress experienced. Furthermore, chewing gum did not result in superior performance on the soluble anagram task. The present study fails to generalise the findings of Scholey et al. to an impasse induced stress that has social components. The explanation for the discrepancy with Scholey et al. is unclear; however, it is suggested that the impossibility of the insoluble anagram task may negate any secondary stress reducing benefits arising from chewing gum-induced task improvement

    The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.

    No full text
    Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites

    Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate.

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages

    The neural correlates of emotion regulation by implementation intentions

    Get PDF
    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency
    corecore