128 research outputs found

    A Proposal for a Detector 2 km Away From the T2K Neutrino Source

    No full text
    We propose building a detector site 2km from the neutrino production point of the the T2K experiment. At this distance, almost the same neutrino flux is measured as that seen at Super-K 295 km away. We propose to measure this flux with both a 1 kton water Cherenkov detector which has been optimized to match Super-K resolution, and a 100 ton fiducial volume liquid argon time projection chamber which will provide fine grain imaging and low particle detection thresholds for a precise study of neutrino interactions at the relevant energies. High energy muons which exit the water Cherenkov detector will be measured by an iron muon ranger. In this document, we show that combination of a detector made with the same target as Super-K, with almost the same detector response, and an extremely fine-grained tracking chamber sited in the off-axis beam, will allow us to predict the events seen at Super-K with very little correction other than that of geometric acceptance

    Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study.

    Get PDF
    The survival of pediatric patients with multiply relapsed and/or refractory (R/R) B-cell acute lymphoblastic leukemia has historically been very poor; however, data are limited in the current era. We conducted a retrospective study to determine the outcome of multiply R/R childhood B-ALL treated at 24 TACL institutions between 2005 and 2013. Patient information, treatment, and response were collected. Prognostic factors influencing the complete remission (CR) rate and event-free survival (EFS) were analyzed. The analytic set included 578 salvage treatment attempts among 325 patients. CR rates (mean ± SE) were 51 ± 4% for patients with bone marrow R/R B-ALL who underwent a second salvage attempt, 37 ± 6% for a third attempt, and 31 ± 6% for the fourth through eighth attempts combined. For patients achieving a CR after their second, third, and fourth through eighth attempts, the 2 year EFS was 41 ± 6%, 13 ± 7%, and 27 ± 13% respectively. Our results showed slight improvement when compared to previous studies. This is the largest and most recent study to date that evaluates the outcome of this patient population. Our data will provide detailed reference for the evaluation of new agents being developed for childhood B-ALL

    Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei

    Get PDF
    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidence of critical point observable in finite nuclei by study the resulting charged fragments distributions. We have obtained the values for the critical exponents gamma, beta and tau and compare our results with those at lower energy experiment (1.0A GeV data). The values suggest that a phase transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics Journal

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    (N.) Cambi, (S.) Čače and (B.) Kirigin Eds.

    No full text
    corecore