376 research outputs found

    Development of a field emitter-based extractor gauge for pressure measurement in cryogenic vacuum systems

    Get PDF

    Eddy current effect of quadrupole and CR dipole magnet beam chambers

    Get PDF

    Observation of tunable single-atom Yu-Shiba-Rusinov states

    Get PDF
    The coupling of a spin to an underlying substrate is the basis for a plethora of phenomena. In the case of a metallic substrate, Kondo screening of the adatom magnetic moment can occur. As the substrate turns superconducting, an intriguing situation emerges where the pair breaking due to the adatom spins leads to Yu-Shiba-Rusinov bound states, but also intertwines with Kondo phenomena. Through scanning tunneling spectroscopy, we analyze the interdependence of Kondo screening and superconductivity. Our data obtained on single Fe adatoms on Nb(110) show that the coupling and the resulting YSR states are strongly adsorption site-dependent and reveal a quantum phase transition at a Kondo temperature comparable to the superconducting gap. The experimental signatures are rationalized by combined density functional theory and continuous-time quantum Monte-Carlo calculations to rigorously treat magnetic and hybridization effects on equal footing.Comment: 6 pages, 4 figure

    Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall

    Get PDF
    The radar-based estimation of intense precipitation produced by convective storms is a challenging task and the verification through comparison with gauges is questionable due to the very high spatial variability of such types of precipitation. In this study, we explore the potential benefit of using a superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The superconducting gravimeter used in this study is installed in Membach (BE), 48&thinsp;m underneath the surface, at 85&thinsp;km distance from a C-band weather radar located in Wideumont (BE). The 15-year observation record 2003–2017 is available for both gravimeter and radar with 1 and 5&thinsp;min time steps, respectively. Water mass increase at ground due to precipitation results in a decrease in underground measured gravity. The gravimeter integrates soil water in a radius of about 400&thinsp;m around the instrument. This allows capture of rainfall at a larger spatial scale than traditional rain gauges. The precision of the gravimeter is a few tenths of nm&thinsp;s−2, 1&thinsp;nm&thinsp;s−2 corresponding to 2.6&thinsp;mm of water. The comparison of reflectivity and gravity time series shows that short-duration intense rainfall events produce a rapid decrease in the underground measured gravity. A remarkable correspondence between radar and gravimeter time series is found. The precipitation amounts derived from gravity measurements and from radar observations are further compared for 505 rainfall events. A correlation coefficient of 0.58, a mean bias (radar–gravimeter)/gravimeter of 0.24 and a mean absolute difference (MAD) of 3.19&thinsp;mm are obtained. A better agreement is reached when applying a hail correction by truncating reflectivity values to a given threshold. No bias, a correlation coefficient of 0.64 and a MAD of 2.3&thinsp;mm are reached using a 48&thinsp;dBZ threshold. The added value of underground gravity measurements as a verification dataset is discussed. The two main benefits are the spatial scale at which precipitation is captured and the interesting property that gravity measurements are directly influenced by water mass at ground no matter the type of precipitation: hail or rain.</p

    Design of the HIV Prevention Trials Network (HPTN) Protocol 054: A cluster randomized crossover trial to evaluate combined access to Nevirapine in developing countries

    Get PDF
    HPTN054 is a cluster randomized trial designed to compare two approaches to providing single dose nevirapine to HIV-seropositive mothers and their infants to prevent mother-to-child transmission of HIV in resource limited settings. A number of challenging issues arose during the design of this trial. Most importantly, the need to achieve high participation rates among pregnant, HIV-seropositive women in selected prenatal care clinics led us to develop a method of collecting anonymous and unlinked information on a key surrogate endpoint instead of pursuing linked and identified information on a clinical endpoint. In addition, since group counseling is the standard model for prenatal care in sub-Saharan Africa, the prenatal care clinic serves as the unit of randomization. However, constraints on the number of suitable clinics and other logistical difficulties necessitated a unique type of hybrid parallel/stepped wedge cluster randomized design in which some clinics cross over between the two treatment modalities and some do not. We describe the design for the HPTN054 trial with an emphasis on the logistic and statistical features that allowed us to address these issues. We also provide some general statistical results that are useful for computing power in parallel, crossover, stepped wedge or mixed designs of cluster randomized trials

    Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised proton

    Get PDF
    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.Comment: 15 pages, 13 figures and 1 tabl

    Measurement of the charged-pion polarisability

    Get PDF
    The COMPASS collaboration at CERN has investigated pion Compton scattering, πγπγ\pi^-\gamma\rightarrow \pi^-\gamma, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction πNiπγ  Ni\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q2<0.0015Q^2<0.0015\,(GeV/cc)2^2. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3undertheassumption under the assumption \alpha_\pi=-\beta_\pi$, which relates the electric and magnetic dipole polarisabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction, that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambigiously known, was performed for an independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl

    Search for exclusive photoproduction of Zc±_c^{\pm}(3900) at COMPASS

    Get PDF
    A search for the exclusive production of the Zc±(3900)Z_c^{\pm}(3900) hadron by virtual photons has been performed in the channel Zc±(3900)J/ψπ±Z_c^{\pm}(3900)\rightarrow J/\psi \pi^{\pm}. The data cover the range from 7 GeV to 19 GeV in the centre-of-mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Zc±(3900)J/ψπ±)×σγ NZc±(3900) N/σγ NJ/ψ NBR(Z_c^{\pm}(3900)\rightarrow J/\psi \pi^{\pm} )\times \sigma_{ \gamma~N \rightarrow Z_c^{\pm}(3900)~ N} /\sigma_{\gamma~N \rightarrow J/\psi~ N} of 3.7×1033.7\times10^{-3} has been established at the confidence level of 90%.Comment: 8 pages, 3 figures, 1 tabl

    Spin alignment and violation of the OZI rule in exclusive ω\omega and ϕ\phi production in pp collisions

    Get PDF
    Exclusive production of the isoscalar vector mesons ω\omega and ϕ\phi is measured with a 190 GeV/c/c proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable xFx_{F} of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on xFx_{F} and on the invariant mass MpVM_{p\mathrm{V}} of the system formed by fast proton pfastp_\mathrm{fast} and vector meson VV is discussed in terms of diffractive production of pfastVp_\mathrm{fast}V resonances in competition with central production. The measurement of the spin density matrix element ρ00\rho_{00} of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on xFx_{F} and on MpVM_{p\mathrm{V}} are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to ω\omega production which are absent in the case of the ϕ\phi meson. Removing the low-mass MpVM_{p\mathrm{V}} resonant region, the OZI rule is found to be violated by a factor of eight, independently of xFx_\mathrm{F}.Comment: 23 pages, 13 figures and 5 table
    corecore