18 research outputs found

    Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells

    Get PDF
    Human hematopoiesis proceeds transiently in the extraembryonic yolk sac and embryonic, then fetal liver before being stabilized in the bone marrow during the third month of gestation. In addition to this classic developmental sequence, we have previously shown that the aorta-gonad-mesonephros (AGM) embryonic territory produces stem cells for definitive hematopoiesis from 27 to 40 days of human development, through an intermediate blood-forming endothelium stage. These studies have relied on the use of traditional markers of human hematopoietic and endothelial cells. In addition, we have recently identified and characterized a novel surface molecule, BB9, which typifies the earliest founders of the human angiohematopoietic system. BB9, which was initially identified with a monoclonal antibody raised to Stro-1(+) bone marrow stromal cells, recognizes in the adult the most primitive Thy-1(+) CD133(+) Lin(−), non-obese diabetic—severe combined immunodeficiency disease (NOD–SCID) mouse engrating hematopoietic stem cells (HSCs). In the 3- to 4-week embryo,BB9expression typifies a subset of splanchnopleural mesodermal cells that migrate dorsally and colonize the ventral aspect of the aorta where they establish a population of hemogenic endothelial cells. We have indeed confirmed that hematopoietic potential in the human embryo, as assessed by long-term culture-initiating cell (LTC-IC) and SCID mouse reconstituting cell (SRC) activities, is confined to BB9-expressing cells. We have further validated these results in the model of human embryonic stem cells (hESCs) in which we have modeled, through the development of hematopoietic embryoid bodies (EBs), primitive and definitive hematopoieses. In this setting, we have documented the emergence of BB9(+) hemangioblast-like clonogenic angiohematopoietic progenitors that currently represent the earliest known founders of the human vascular and blood systems

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    alpha6 integrins participate in pro-T cell homing to the thymus

    No full text

    Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice.

    No full text
    Item does not contain fulltextBACKGROUND: Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS: To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS: In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS: We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.01 december 201
    corecore