458 research outputs found

    A Kerr Polarization Controller

    Get PDF
    Kerr-effect-induced changes of the polarization state of light are well known in pulsed laser systems. An example is nonlinear polarization rotation, which is critical to the operation of many types of mode-locked lasers. Here, we demonstrate that the Kerr effect in a high-finesse Fabry-Pérot resonator can be utilized to control the polarization of a continuous wave laser. It is shown that a linearly-polarized input field is converted into a left- or right-circularly-polarized field, controlled via the optical power. The observations are explained by Kerr-nonlinearity induced symmetry breaking, which splits the resonance frequencies of degenerate modes with opposite polarization handedness in an otherwise symmetric resonator. The all-optical polarization control is demonstrated at threshold powers down to 7 mW. The physical principle of such Kerr effect-based polarization controllers is generic to high-Q Kerr-nonlinear resonators and could also be implemented in photonic integrated circuits. Beyond polarization control, the spontaneous symmetry breaking of polarization states could be used for polarization filters or highly sensitive polarization sensors when operated close to the symmetry-breaking point

    Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph

    Get PDF
    Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones. Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).Comment: 16 pages, 7 figures, revised version accepted to A&

    Shadows and spirals in the protoplanetary disk HD 100453

    Get PDF
    Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in polarized scattered light with SPHERE/VLT at optical and near-infrared wavelengths, reaching an angular resolution of ~0.02", and an inner working angle of ~0.09". We detect polarized scattered light up to ~0.42" (~48 au) and detect a cavity, a rim with azimuthal brightness variations at an inclination of 38 degrees, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint spiral-like feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of ~119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by ~72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim, induces an azimuthal variation of the scale height that can contribute to the brightness variations. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. The origin of such a misalignment in HD 100453, and of the spirals, is unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit.Comment: A&A, accepte

    [First case description of contagious ovine digital dermatitis in Switzerland].

    Get PDF
    Contagious ovine digital dermatitis (CODD) is an emerging infectious foot disease in sheep. To date, CODD has been described in Great Britain, Ireland, Sweden and Germany and now in Switzerland for the first time. Unlike foot rot, the CODD lesions do not spread from the interdigital space, but usually begin at the dorsal/abaxial coronary band. The changes can spread to the hoof wall and the sole and finally can lead to exungulation, similar to foot rot. Treponema spp. are often found in CODD lesions analogous to digital dermatitis (Mortellaro's disease) in cattle. Involvement of Dichelobacter nodosus (D. nodosus) is considered a risk factor, but the presence of the bacterium is not mandatory. In February 2022, ulcerative lesions in the dorso-axial coronary band area were noticed on both claws of the left forelimb in an ewe. Histology of the biopsy showed hyperkeratosis and erosion with exocytosis and crust formation. Treponema spp. PCR and fluorescence in situ hybridization (FISH) were positive for Treponema phylotype 1 (PT1). In addition, D. nodosus and Porphyromonas levii could be detected in the biopsy using PCR. A single local application of chlortetracycline spray led to clinical healing within two weeks, no recurrence was seen within the following two months. Three control sheep, which were kept together with the diseased sheep, did not show any clinical signs of CODD. Treponema spp could not be found in interdigital and coronary band biopsies by PCR or FISH. This is the first description of CODD in Switzerland and aims to sensitize veterinarians to CODD as a differential diagnosis for foot diseases in sheep

    Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    Get PDF
    The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.Comment: Accepted for publication in A&A, 20 pages, 15 figure
    corecore