40 research outputs found

    Long-term forecast of thermal mortality with climate warming in riverine amphipods

    Get PDF
    Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.ANID PIA/BASAL FB0002Fondo Nacional de Desarrollo Científico y Tecnológico, Grant/Award Number: 1211113Ministerio de Ciencia e Inovación, Grant/Award Number: Juan de la Cierva-formación FellowshipNederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/ Award Number: 016.161.32

    Plant Dispersal in a Temperate Stream by Fish Species With Contrasting Feeding Habits: The Role of Plant Traits, Fish Diet, Season, and Propagule Availability

    Get PDF
    Whether fish mediate plant dispersal in temperate freshwaters is largely unknown. A prerequisite for successful dispersal is ingestion and surviving the journey in the intestinal tract. This study asks whether plant propagules are being ingested under field conditions and what factors shape dispersal potential, focusing on differences across plant species and propagule form (seed or fragment), seasonal differences and plant and fish traits that facilitate dispersal. We focused on three common fish species reported to differ in foraging strategy. Fish were caught monthly over a 1-year period in a Dutch lowland stream. Before they were returned to the stream, fish were kept in water for 26 h and their feces were collected, resulting in 150 fecal samples. Excreted animal remains and plant propagules were identified and enumerated. Plant propagules were tested for viability. In total, 88,579 vegetative fragments of vascular plants, 316 of mosses and 14 of charophytes were identified. Viability was low (<<1%) except for mosses (53.5%). Roach (Rutilis rutilis) and Rudd (Scardinius erythrophthalmus) displayed a preference for filamentous algae and certain plant species (i.e., Elodea nuttallii and Lemna sp.), likely because they were more palatable. Of the 1,787 generative propagules of vascular plants that were identified, 120 germinated (6.7%), representing 15 species. Betula pendula, Juncus effusus, and Poa trivialis were most abundant. Tench (Tinca tinca) egested most seeds, despite being the least herbivorous species. Particularly, germination was high for seeds that were light (<1.07 mg) and that floated for a long time. Our results show that fish do ingest plant propagules under field conditions and that fish can contribute to vegetative dispersal of vascular plants and several aquatic and riparian moss species. Ingestion of propagules is affected by water temperature and season, their availability in the propagule bank, and their palatability. Both seed traits (related to buoyancy, size and hardness) and fish traits (related to size and identity) were important. Despite substantial dietary overlap, the three fish species displayed subtle differences in their diet, and together can act as vectors for the dispersal of a range of plant and moss species of freshwater systems

    Foundation species enhance food web complexity through non-trophic facilitation

    Get PDF
    Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species’ food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.</p

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    Data from: Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water-and air-breathers

    Get PDF
    Global warming appears to favour smaller-bodied organisms, but whether larger species are also more vulnerable to thermal extremes, as suggested for past mass-extinction events, is still an open question. Here, we tested whether interspecific differences in thermal tolerance (heat and cold) of ectotherm organisms are linked to differences in their body mass and genome size (as a proxy for cell size). Since the vulnerability of larger, aquatic taxa to warming has been attributed to the oxygen limitation hypothesis, we also assessed how body mass and genome size modulate thermal tolerance in species with contrasting breathing modes, habitats and life stages. A database with the upper (CTmax) and lower (CTmin) critical thermal limits and their methodological aspects was assembled comprising more than 500 species of ectotherms. Our results demonstrate that thermal tolerance in ectotherms is dependent on body mass and genome size and these relationships became especially evident in prolonged experimental trials where energy efficiency gains importance. During long-term trials, CTmax was impaired in larger-bodied water-breathers, consistent with a role for oxygen limitation. Variation in CTmin was mostly explained by the combined effects of body mass and genome size and it was enhanced in larger-celled, air-breathing species during long-term trials, consistent with a role for depolarization of cell membranes. Our results also highlight the importance of accounting for phylogeny and exposure duration. Especially when considering long-term trials, the observed effects on thermal limits are more in line with the warming-induced reduction in body mass observed during long-term rearing experiments

    Differences in critical thermal maxima (<i>CT</i><sub>max</sub>) in the stonefly <i>Dinocras cephalotes</i> at three different levels of oxygen (a), the relationship between <i>CT</i><sub>max</sub> of the stonefly nymphs and their thermal sensitivity in oxygen consumption (b) and their body mass (c).

    No full text
    <p>Differences in <i>CT</i><sub>max</sub> were consistent with the mechanism of oxygen limitation: hypoxia lowered <i>CT</i><sub>max</sub>, while hyperoxia increased <i>CT</i><sub>max</sub> (a) and thermal maxima were lower for individuals which strongly increased their oxygen consumption rates at higher temperatures (high Q<sub>10</sub> values). Each bar represents the average (± s.e.) of 15 nymphs. Letters indicate significant differences (<i>P<0.05</i>; Tukey HSD post hoc test following an anova including only oxygen treatment: F<sub>2,41</sub> = 44·06, P<0·001).</p

    Statistical analysis of critical thermal maxima in relation to ambient oxygen levels, larval oxygen consumption and body mass.

    No full text
    <p>Ancova statistics on critical thermal maxima. Significant results are indicated in bold. Thermal maxima were highest for hyperoxia (36 kPa) and lowest for hypoxia (14 kPa). In addition thermal maxima were lowest for larvae which consumed more oxygen at higher temperatures. (SS = Sum of squares; d.f. = degrees of freedom).</p

    Phylogenetic tree of aquatic plant species

    No full text
    The phylogenetic tree used for the phylogenetic data analyses: to calculate the phylogenetic signal (Blomberg's K) and to perform PGLS (phylogenetic generalised least squares). The method of how this tree was constructed is described in the manuscript
    corecore