306 research outputs found

    Formation and Structure of Low Density Exo-Neptunes

    Full text link
    Kepler has found hundreds of Neptune-size (2-6 R_Earth) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. Using theoretical models of planet formation, evolution and structure, we explore the range of minimum plausible masses for low-density exo-Neptunes. We focus on highly irradiated planets with T_eq>=500K. We consider two separate formation pathways for low-mass planets with voluminous atmospheres of light gases: core nucleated accretion and outgassing of hydrogen from dissociated ices. We show that Neptune-size planets at T_eq=500K with masses as small as a few times that of Earth can plausibly be formed core nucleated accretion coupled with subsequent inward migration. We also derive a limiting low-density mass-radius relation for rocky planets with outgassed hydrogen envelopes but no surface water. Rocky planets with outgassed hydrogen envelopes typically have computed radii well below 3 R_Earth. For both planets with H/He envelopes from core nucleated accretion and planets with outgassed hydrogen envelopes, we employ planet interior models to map the range of planet mass--envelope mass--equilibrium temperature parameter space that is consistent with Neptune-size planet radii. Atmospheric mass loss mediates which corners of this parameter space are populated by actual planets and ultimately governs the minimum plausible mass at a specified transit radius. We find that Kepler's 2-6 R_Earth planet candidates at T_eq=500--1000K could potentially have masses less than ~4 M_Earth. Although our quantitative results depend on several assumptions, our qualitative finding that warm Neptune-size planets can have masses substantially smaller than those given by interpolating the masses and radii of planets within our Solar System is robust.Comment: 17 pages, 9 figures, accepted for publication in Ap

    Nab: Measurement Principles, Apparatus and Uncertainties

    Get PDF
    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to appear in Nucl. Instrum. Meth. in Physics Research

    Statistical Theory of Parity Nonconservation in Compound Nuclei

    Get PDF
    We present the first application of statistical spectroscopy to study the root-mean-square value of the parity nonconserving (PNC) interaction matrix element M determined experimentally by scattering longitudinally polarized neutrons from compound nuclei. Our effective PNC interaction consists of a standard two-body meson-exchange piece and a doorway term to account for spin-flip excitations. Strength functions are calculated using realistic single-particle energies and a residual strong interaction adjusted to fit the experimental density of states for the targets, ^{238} U for A\sim 230 and ^{104,105,106,108} Pd for A\sim 100. Using the standard Desplanques, Donoghue, and Holstein estimates of the weak PNC meson-nucleon coupling constants, we find that M is about a factor of 3 smaller than the experimental value for ^{238} U and about a factor of 1.7 smaller for Pd. The significance of this result for refining the empirical determination of the weak coupling constants is discussed.Comment: Latex file, no Fig

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=14sin2θwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding

    Neutron Beta Decay Studies with Nab

    Full text link
    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg, Florida, May 201

    Anapole Moment and Other Constraints on the Strangeness Conserving Hadronic Weak Interaction

    Get PDF
    Standard analyses of low-energy NN and nuclear parity-violating observables have been based on a pi-, rho-, and omega-exchange model capable of describing all five independent s-p partial waves. Here a parallel analysis is performed for the one-body, exchange-current, and nuclear polarization contributions to the anapole moments of 133Cs and 205Tl. The resulting constraints are not consistent, though there remains some degree of uncertainty in the nuclear structure analysis of the atomic moments.Comment: Revtex, 10 pages, 1 figur

    The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

    Get PDF
    Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, λ=gA/gV\lambda = g_A / g_V, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter aa with a precision of δa/a=103\delta a / a = 10^{-3} and the Fierz interference term bb to δb=3×103\delta b = 3\times10^{-3} in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio λ\lambda with a precision of δλ/λ=0.03%\delta \lambda / \lambda = 0.03\% that will allow an evaluation of VudV_{ud} and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.Comment: Presented at PPNS201

    High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Get PDF
    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE
    corecore