15 research outputs found

    Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and nonpleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    Pycnoporus cinnabarinus glyoxal oxidases display differential catalytic efficiencies on 5‑hydroxymethylfurfural and its oxidized derivatives

    No full text
    Background: 5-Hydroxymethylfurfural (HMF), a major residual component of a lignocellulosic bio-refinery process, can be transformed into fundamental building blocks for green chemistry via oxidation. While chemical methods are well established, interest is also being directed into the enzymatic oxidation of HMF into the bio-plastic precursor 2,5-furandicarboxylic acid (FDCA). Results: We demonstrate that three glyoxal oxidases (PciGLOX) isoenzymes from the Basidiomycete fungus Pycnoporus cinnabarinus were able to oxidize HMF, with PciGLOX2 and PciGLOX3 being the most efficient. The major reaction product obtained with the three isoenzymes was 5-hydroxymethyl-2-furancarboxylic (HMFCA), a precursor in polyesters and pharmaceuticals production, and very little subsequent conversion of this compound was observed. However, small concentrations of FDCA, a substitute for terephthalic acid in the production of polyesters, were also obtained. The oxidation of HMF was significantly boosted in the presence of catalase for PciGLOX2, leading to 70% HMFCA yield. The highest conversion percentages were observed on 2,5-furandicarboxaldehyde (DFF), a minor product from the reaction of PciGLOX on HMF. To bypass HMFCA accumulation and exploit the efficiency of PciGLOX in oxidizing DFF and 5-formyl-2-furan carboxylic acid (FFCA) towards FDCA production, HMF was oxidized in a cascade reaction with an aryl alcohol oxidase (UmaAAO). After 2 h of reaction, UmaAAO completely oxidized HMF to DFF and further to FFCA, with FDCA only being detected when PciGLOX3 was added to the reaction. The maximum yield of 16% FDCA was obtained 24 h after the addition of PciGLOX3 in the presence of catalase. Conclusions: At least two conversion pathways for HMF oxidation can be considered for PciGLOX; however, the highest selectivity was seen towards the production of the valuable polyester precursor HMFCA. The three isoenzymes showed differences in their catalytic efficiencies and substrate specificities when reacted with HMF derivatives

    Morphology and phylogeny of Chaetospermum (asexual coelomycetous Basidiomycota

    No full text
    International audienceFive asexually reproducing basidiomycetous fungi, isolated from northern and southern provinces of Thailand, characterized by slimy, setulate conidia in creamy white pycnidia and classified in the genus Chaetospermum, are studied in detail. Two species, C. camelliae and C. artocarpi, are redescribed and epitypified. A phylogenetic tree based on 28S large subunit rDNA (LSU) sequence was used to analyze their taxonomy and relationships. The study confirmed that Chaetospermum belongs to the Sebacinales, a poorly studied order of Agaricomycetes

    Lignocellulolytic capability of endophytic Phyllostica sp.

    No full text
    International audienceThe Dothideomycetes represent the largest fungal class of Ascomycota. It is an ubiquitous class of fungi whose members span a wide spectrum of lifestyles and host interactions. The endophytic fungus Phyllosticta is one members of the Dothideomycetes, causing disease in economic crops. Phyllosticta was screened for the degradation of lignocellulosic biomass of commercial relevance, such as rice straw, rice husk, sorghum, wheat straw, miscanthus, lavender flower, and lavender straw. The highest degrading strains were identified from an initial screen and further analyzed for the secretion of lignocellulosic enzymes during growth on the different biomasses. With Phyllosticta capitalensis (MFLUCC14-0233), maximum activity of arabinase (944.18 U/ml culture), cellulase (27.10 U/ml), xylanase (10.85 U/ml), pectinase (465.47 U/ml), and laccase (35.68 U/ml) activities could be detected in the secretome during growth on lavender flowers and lavender straw. Phyllosticta capitalensis is thus an interesting new strain for the production of lignocellulosic enzymes during growth on cheap agro-industrial biomass

    Pycnoporus cinnabarinus glyoxal oxidases display differential catalytic efficiencies on 5‑hydroxymethylfurfural and its oxidized derivatives

    No full text
    International audienceBackground: 5-Hydroxymethylfurfural (HMF), a major residual component of a lignocellulosic bio-refinery process, can be transformed into fundamental building blocks for green chemistry via oxidation. While chemical methods are well established, interest is also being directed into the enzymatic oxidation of HMF into the bio-plastic precursor 2,5-furandicarboxylic acid (FDCA). Results: We demonstrate that three glyoxal oxidases (PciGLOX) isoenzymes from the Basidiomycete fungus Pycnoporus cinnabarinus were able to oxidize HMF, with PciGLOX2 and PciGLOX3 being the most efficient. The major reaction product obtained with the three isoenzymes was 5-hydroxymethyl-2-furancarboxylic (HMFCA), a precursor in polyesters and pharmaceuticals production, and very little subsequent conversion of this compound was observed. However, small concentrations of FDCA, a substitute for terephthalic acid in the production of polyesters, were also obtained. The oxidation of HMF was significantly boosted in the presence of catalase for PciGLOX2, leading to 70% HMFCA yield. The highest conversion percentages were observed on 2,5-furandicarboxaldehyde (DFF), a minor product from the reaction of PciGLOX on HMF. To bypass HMFCA accumulation and exploit the efficiency of PciGLOX in oxidizing DFF and 5-formyl-2-furan carboxylic acid (FFCA) towards FDCA production, HMF was oxidized in a cascade reaction with an aryl alcohol oxidase (UmaAAO). After 2 h of reaction, UmaAAO completely oxidized HMF to DFF and further to FFCA, with FDCA only being detected when PciGLOX3 was added to the reaction. The maximum yield of 16% FDCA was obtained 24 h after the addition of PciGLOX3 in the presence of catalase. Conclusions: At least two conversion pathways for HMF oxidation can be considered for PciGLOX; however, the highest selectivity was seen towards the production of the valuable polyester precursor HMFCA. The three isoenzymes showed differences in their catalytic efficiencies and substrate specificities when reacted with HMF derivatives

    Glyoxal Oxidases from Pycnoporus Cinnabarinus for Green Chemistry Applications

    No full text
    Glyoxal Oxidases from Pycnoporus Cinnabarinus for Green Chemistry Applications . International Symposium on Green Chemistry (2017

    Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus <i>Pestalotiopsis</i> sp.

    Get PDF
    Two laccase-encoding genes from the marine-derived fungus Pestalotiopsis sp. have been cloned in Aspergillus niger for heterologous production, and the recombinant enzymes have been characterized to study their physicochemical properties, their ability to decolorize textile dyes for potential biotechnological applications, and their activity in the presence of sea salt. The optimal pH and temperature of PsLac1 and PsLac2 differed in relation to the substrates tested, and both enzymes were shown to be extremely stable at temperatures up to 50 &#176;C, retaining 100% activity after 3 h at 50 &#176;C. Both enzymes were stable between pH 4&#8211;6. Different substrate specificities were exhibited, and the lowest Km and highest catalytic efficiency values were obtained against syringaldazine and 2,6-dimethoxyphenol (DMP) for PsLac1 and PsLac2, respectively. The industrially important dyes&#8212;Acid Yellow, Bromo Cresol Purple, Nitrosulfonazo III, and Reactive Black 5&#8212;were more efficiently decolorized by PsLac1 in the presence of the redox mediator 1-hydroxybenzotriazole (HBT). Activities were compared in saline conditions, and PsLac2 seemed more adapted to the presence of sea salt than PsLac1. The overall surface charges of the predicted PsLac three-dimensional models showed large negatively charged surfaces for PsLac2, as found in proteins for marine organisms, and more balanced solvent exposed charges for PsLac1, as seen in proteins from terrestrial organisms

    Towards a natural classification of Botryosphaeriales

    Get PDF
    The type specimens of Auerswaldia, Auerswaldiella, Barriopsis, Botryosphaeria, Leptoguignardia, Melanops, Neodeightonia, Phaeobotryon, Phaeobotryosphaeria, Phyllachorella, Pyrenostigme, Saccharata, Sivanesania, Spencermartinsia and Vestergrenia were examined and fresh specimens of Botryosphaeriales were collected from Thailand. This material is used to provide a systematic treatment of Botryosphaeriales based on morphology and phylogeny. Two new genera, Botryobambusa and Cophinforma are introduced and compared with existing genera. Four species new to science, Auerswaldia dothiorella, A. lignicola, Botryosphaeria fusispora and Phaeobotryosphaeria eucalypti, are also described and justified. We accept 29 genera in Botryosphaeriales, with Macrovalsaria being newly placed. In the phylogenetic tree, the 114 strains of Botyrosphaeriales included in the analysis cluster into two major clades with 80 %, 96 % and 1.00 (MP, ML and BY) support, with Clade A containing the family type of Botryosphaeriaceae, and Clade B containing Phyllosticta, Saccharata and Melanops species. This group may represent Phyllostictaceae. In Clade A the taxa analyzed cluster in eight sub-clades (Clades A1-8). Clade A1 comprises three distinct subclusters corresponding to the genera Diplodia (Diplodia Clade), Neodeightonia (Neodeightonia Clade) and Lasiodiplodia (Lasiodiplodia Clade). Clade A2 clusters into three groups representing Phaeobotryosphaeria (100 %), Phaeobotryon (100 %) and Barriopsis (94 %). Clade A3 incorporates 17 strains that cluster into three well-supported genera (Dothiorella (86 %), Spencermartinsia (100 %) and Auerswaldia (63 %); the position of Macrophomina is not stable. Clade A4 is a single lineage (100 %) representing the new genus Botryobambusa. Clade A5 is a well-supported subclade incorporating Neofussicoccum. Clade A6 represents the type species of Botryosphaeria, three other Botryosphaeria species and two other genera, Neoscytalidium and Cophinforma gen. nov. Clade A7 comprises two Pseudofusicoccum species and Clade A8 has two Aplosporella species. These sub-clades may eventually require separate families but this requires analysis of a much larger dataset. Our data advances the understanding of Botryosphaeriales, there is, however, still much research to be carried out with resolution of families and genera, linkage of sexual and asexual morphs and differentiation of cryptic species.Fil: Liu, Jian Kui. Mae Fah Luang University; Tailandia. Chinese Academy of Forestry; ChinaFil: Phookamsak, Rungtiwa. Mae Fah Luang University; TailandiaFil: Doilom, Mingkhuan. Mae Fah Luang University; TailandiaFil: Wikee, Saowanee. Mae Fah Luang University; TailandiaFil: Li, Yan Mei. Chinese Academy of Forestry; ChinaFil: Ariyawansha, Hiran. Mae Fah Luang University; TailandiaFil: Boonmee, Saranyaphat. Mae Fah Luang University; TailandiaFil: Chomnunti, Putarak. Mae Fah Luang University; TailandiaFil: Dai, Dong Qin. Mae Fah Luang University; TailandiaFil: Bhat, Jayarama D.. Mae Fah Luang University; TailandiaFil: Romero, Andrea Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Zhuang, Wen Ying. Chinese Academy of Sciences; República de ChinaFil: Monkai, Jutamart. Mae Fah Luang University; TailandiaFil: Jones, E. B. Gareth. University of Malaya; MalasiaFil: Chukeatirote, Ekachai. Mae Fah Luang University; TailandiaFil: Ko Ko, Thida Win. Mae Fah Luang University; TailandiaFil: Zhao, Yong Chang. Yunnan Academy of Agricultural Science; ChinaFil: Wang,Yong. Guizhou University; ChinaFil: Hyde, Kevin D.. Chinese Academy of Forestry; China. Mae Fah Luang University; Tailandi

    Recommended names for pleomorphic genera in Dothideomycetes

    No full text
    This paper provides recommendations of one name for use among pleomorphic genera in Dothideomycetes by the Working Group on Dothideomycetes established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). A number of these generic names are proposed for protection because they do not have priority and/or the generic name selected for use is asexually typified. These include: Acrogenospora over Farlowiella; Alternaria over Allewia, Lewia, and Crivellia; Botryosphaeria over Fusicoccum; Camarosporula over Anthracostroma; Capnodium over Polychaeton; Cladosporium over Davidiella; Corynespora over Corynesporasca; Curvularia over Pseudocochliobolus; Elsinoë over Sphaceloma; Excipulariopsis over Kentingia; Exosporiella over Anomalemma; Exserohilum over Setosphaeria; Gemmamyces over Megaloseptoria; Kellermania over Planistromella; Kirschsteiniothelia over Dendryphiopsis; Lecanosticta over Eruptio; Paranectriella over Araneomyces; Phaeosphaeria over Phaeoseptoria; Phyllosticta over Guignardia; Podonectria over Tetracrium; Polythrincium over Cymadothea; Prosthemium over Pleomassaria; Ramularia over Mycosphaerella; Sphaerellopsis over Eudarluca; Sphaeropsis over Phaeobotryosphaeria; Stemphylium over Pleospora; Teratosphaeria over Kirramyces and Colletogloeopsis; Tetraploa over Tetraplosphaeria; Venturia over Fusicladium and Pollaccia; and Zeloasperisporium over Neomicrothyrium. Twenty new combinations are made: Acrogenospora carmichaeliana (Berk.) Rossman & Crous, Alternaria scrophulariae (Desm.) Rossman & Crous, Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, P. dematioidea (Bubák & Wróbl.) Rossman & K.D. Hyde, P. fugax (Wallr.) Rossman & K.D. Hyde, P. nobleae (McKenzie & D. Matthews) Rossman & K.D. Hyde, P. triseptata (Drechsler) Rossman & K.D. Hyde, Schizothyrium cryptogamum (Batzer & Crous) Crous & Batzer, S. cylindricum (G.Y. Sun et al. ) Crous & Batzer, S. emperorae (G.Y. Sun & L. Gao) Crous & Batzer, S. inaequale (G.Y. Sun & L. Gao) Crous & Batzer, S. musae (G.Y. Sun & L. Gao) Crous & Batzer, S. qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, S. tardecrescens (Batzer & Crous) Crous & Batzer, S. wisconsinense (Batzer & Crous) Crous & Batzer, Teratosphaeria epicoccoides (Cooke & Massee) Rossman & W.C. Allen, Venturia catenospora (Butin) Rossman & Crous, V. convolvularum (Ondrej) Rossman & Crous, V. oleaginea (Castagne) Rossman & Crous, and V. phillyreae (Nicolas & Aggéry) Rossman & Crous, combs. nov. Three replacement names are also proposed: Pyrenophora grahamii Rossman & K.D. Hyde, Schizothyrium sunii Crous & Batzer, and Venturia barriae Rossman & Crous noms. nov
    corecore