615 research outputs found
On the absence of radio halos in clusters with double relics
Pairs of radio relics are believed to form during cluster mergers, and are
best observed when the merger occurs in the plane of the sky. Mergers can also
produce radio halos, through complex processes likely linked to turbulent
re-acceleration of cosmic-ray electrons. However, only some clusters with
double relics also show a radio halo. Here, we present a novel method to derive
upper limits on the radio halo emission, and analyse archival X-ray Chandra
data, as well as galaxy velocity dispersions and lensing data, in order to
understand the key parameter that switches on radio halo emission. We place
upper limits on the halo power below the
correlation for some clusters, confirming that clusters with double relics have
different radio properties. Computing X-ray morphological indicators, we find
that clusters with double relics are associated with the most disturbed
clusters. We also investigate the role of different mass-ratios and
time-since-merger. Data do not indicate that the merger mass ratio has an
impact on the presence or absence of radio halos (the null hypothesis that the
clusters belong to the same group cannot be rejected). However, the data
suggests that the absence of radio halos could be associated with early and
late mergers, but the sample is too small to perform a statistical test. Our
study is limited by the small number of clusters with double relics. Future
surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to
better address this issue.Comment: 12 pages, 7 figures, MNRAS accepte
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster
Line emission from dark matter is well motivated for some candidates e.g.
sterile neutrinos. We present the first search for dark matter line emission in
the 3-80keV range in a pointed observation of the Bullet Cluster with NuSTAR.
We do not detect any significant line emission and instead we derive upper
limits (95% CL) on the flux, and interpret these constraints in the context of
sterile neutrinos and more generic dark matter candidates. NuSTAR does not have
the sensitivity to constrain the recently claimed line detection at 3.5keV, but
improves on the constraints for energies of 10-25keV.Comment: 7 pages, 5 figures, submitted to Ap
Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters
A number of relaxed, cool-core galaxy clusters exhibit diffuse,
steep-spectrum radio sources in their central regions, known as radio
mini-halos. It has been proposed that the relativistic electrons responsible
for the emission have been reaccelerated by turbulence generated by the
sloshing of the cool core gas. We present a high-resolution MHD simulation of
gas sloshing in a galaxy cluster coupled with subgrid simulations of
relativistic electron acceleration to test this hypothesis. Our simulation
shows that the sloshing motions generate turbulence on the order of 50-200 km s on spatial scales of 50-100 kpc and below in the
cool core region within the envelope of the sloshing cold fronts, whereas
outside the cold fronts, there is negligible turbulence. This turbulence is
potentially strong enough to reaccelerate relativistic electron seeds (with
initial ) to via damping of
magnetosonic waves and non-resonant compression. The seed electrons could
remain in the cluster from, e.g., past AGN activity. In combination with the
magnetic field amplification in the core, these electrons then produce diffuse
radio synchrotron emission that is coincident with the region bounded by the
sloshing cold fronts, as indeed observed in X-rays and the radio. The result
holds for different initial spatial distributions of preexisting relativistic
electrons. The power and the steep spectral index () of the
resulting radio emission are consistent with observations of minihalos, though
the theoretical uncertainties of the acceleration mechanisms are high. We also
produce simulated maps of inverse-Compton hard X-ray emission from the same
population of relativistic electrons.Comment: 28 pages, 29 figures, in emulateapj format. Revised version accepted
by the referee, conclusions unchange
GRB 000418: A Hidden Jet Revealed?
We report on optical, near-infrared and centimeter radio observations of
GRB000418 which allow us to follow the evolution of the afterglow from 2 to 200
days after the gamma-ray burst. In modeling these broad-band data, we find that
an isotropic explosion in a constant density medium is unable to simultaneously
fit both the radio and optical data. However, a jet-like outflow with an
opening angle of 10-20 degress provides a good description of the data. The
evidence in favor of a jet interpretation is based on the behavior of the radio
light curves, since the expected jet break is masked at optical wavelengths by
the light of the host galaxy. We also find evidence for extinction, presumably
arising from within the host galaxy, with A(V)=0.4 mag, and host flux densities
of F_R=1.1 uJy and F_K=1.7 uJy. These values supercede previous work on this
burst due to the availability of a broad-band data set allowing a global
fitting approach. A model in which the GRB explodes into a wind-stratified
circumburst medium cannot be ruled out by these data. However, in examining a
sample of other bursts (e.g. GRB990510, GRB000301C) we favor the jet
interpretation for GRB000418.Comment: ApJ, submitte
The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN
From optical spectroscopy of X-ray sources observed as part of ChaMP, we
present redshifts and classifications for a total of 1569 Chandra sources from
our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO,
Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We
classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20%
stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled
extensive photometry from X-ray to radio bands. Together with our spectroscopic
information, this enables us to derive detailed SEDs for our extragalactic
sources. We fit a variety of templates to determine bolometric luminosities,
and to constrain AGN and starburst components where both are present. While
~58% of X-ray Seyferts require a starburst event to fit observed photometry
only 26% of the X-ray QSO population appear to have some kind of star formation
contribution. This is significantly lower than for the Seyferts, especially if
we take into account torus contamination at z>1 where the majority of our X-ray
QSOs lie. In addition, we observe a rapid drop of the percentage of starburst
contribution as X-ray luminosity increases. This is consistent with the
quenching of star formation by powerful QSOs, as predicted by the merger model,
or with a time lag between the peak of star formation and QSO activity. We have
tested the hypothesis that there should be a strong connection between X-ray
obscuration and star-formation but we do not find any association between X-ray
column density and star formation rate both in the general population or the
star-forming X-ray Seyferts. Our large compilation also allows us to report
here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO
candidates. Also we have identified the highest redshift (z=5.4135) X-ray
selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data
table and README file can be found online at
http://hea-www.harvard.edu/~pgreen/Papers.htm
Astro 2020 Science White Paper: Time Domain Studies of Neutron Star and Black Hole Populations: X-ray Identification of Compact Object Types
What are the most important conditions and processes governing the growth of
stellar-origin compact objects? The identification of compact object type as
either black hole (BH) or neutron star (NS) is fundamental to understanding
their formation and evolution. To date, time-domain determination of compact
object type remains a relatively untapped tool. Measurement of orbital periods,
pulsations, and bursts will lead to a revolution in the study of the
demographics of NS and BH populations, linking source phenomena to accretion
and galaxy parameters (e.g., star formation, metallicity). To perform these
measurements over sufficient parameter space, a combination of a wide-field
(>5000 deg^2) transient X-ray monitor over a dynamic energy range (~1-100 keV)
and an X-ray telescope for deep surveys with <5 arcsec PSF half-energy width
(HEW) angular resolution are required. Synergy with multiwavelength data for
characterizing the underlying stellar population will transform our
understanding of the time domain properties of transient sources, helping to
explain details of supernova explosions and gravitational wave event rates.Comment: 9 pages, 2 figures. Submitted to the Astro2020 Decadal Surve
The Coma cluster magnetic field from Faraday rotation measures
The aim of the present work is to constrain the Coma cluster magnetic field
strength, its radial profile and power spectrum by comparing Faraday Rotation
Measure (RM) images with numerical simulations of the magnetic field. We have
analyzed polarization data for seven radio sources in the Coma cluster field
observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday
Rotation Measures with kiloparsec scale resolution. Random three dimensional
magnetic field models have been simulated for various values of the central
intensity B_0 and radial power-law slope eta, where eta indicates how the field
scales with respect to the gas density profile. We derive the central magnetic
field strength, and radial profile values that best reproduce the RM
observations. We find that the magnetic field power spectrum is well
represented by a Kolmogorov power spectrum with minimum scale ~ 2 kpc and
maximum scale ~ 34 kpc. The central magnetic field strength and radial slope
are constrained to be in the range (B_0=3.9 microG; eta=0.4) and (B_0=5.4
microG; eta=0.7) within 1sigma. The best agreement between observations and
simulations is achieved for B_0=4.7 microG; eta=0.5. Values of B_0>7 microG and
1.0 are incompatible with RM data at
99 % confidence level.Comment: 23 pages, 21 figures. Higher resolution available at
http://www.ira.inaf.it/~bonafede/paper.pdf. A&A accepte
Hard X-ray emitting Active Galactic Nuclei selected by the Chandra Multi-wavelength Project
We present X-ray and optical analysis of 188 AGN identified from 497 hard
X-ray (f (2.0-8.0 keV) > 2.7x10^-15 erg cm^-2 s^-1) sources in 20 Chandra
fields (1.5 deg^2) forming part of the Chandra Multi-wavelength Project. These
medium depth X-ray observations enable us to detect a representative subset of
those sources responsible for the bulk of the 2-8 keV Cosmic X-ray Background.
Brighter than our optical spectroscopic limit, we achieve a reasonable degree
of completeness (77% of X-ray sources with counter-parts r'< 22.5 have been
classified): broad emission line AGN (62%), narrow emission line galaxies
(24%), absorption line galaxies (7%), stars (5%) or clusters (2%). We find that
most X-ray unabsorbed AGN (NH<10^22 cm^-2) have optical properties
characterized by broad emission lines and blue colors, similiar to
optically-selected quasars from the Sloan Digital Sky Survey but with a slighly
broader color distribution. However, we also find a significant population of
redder (g'-i'>1.0) AGN with broad optical emission lines. Most of the X-ray
absorbed AGN (10^22<NH<10^24 cm^-2) are associated with narrow emission line
galaxies, with red optical colors characteristically dominated by luminous,
early type galaxy hosts rather than from dust reddening of an AGN. We also find
a number of atypical AGN; for instance, several luminous AGN show both strong
X-ray absorption (NH>10^22 cm^-2) and broad emission lines. Overall, we find
that 81% of X-ray selected AGN can be easily interpreted in the context of
current AGN unification models. Most of the deviations seem to be due to an
optical contribution from the host galaxies of the low luminosity AGN.Comment: 26 pages; 13 figures (7 color); accepted for publication in the
Astrophysical Journa
Clusters of galaxies : observational properties of the diffuse radio emission
Clusters of galaxies, as the largest virialized systems in the Universe, are
ideal laboratories to study the formation and evolution of cosmic
structures...(abridged)... Most of the detailed knowledge of galaxy clusters
has been obtained in recent years from the study of ICM through X-ray
Astronomy. At the same time, radio observations have proved that the ICM is
mixed with non-thermal components, i.e. highly relativistic particles and
large-scale magnetic fields, detected through their synchrotron emission. The
knowledge of the properties of these non-thermal ICM components has increased
significantly, owing to sensitive radio images and to the development of
theoretical models. Diffuse synchrotron radio emission in the central and
peripheral cluster regions has been found in many clusters. Moreover
large-scale magnetic fields appear to be present in all galaxy clusters, as
derived from Rotation Measure (RM) studies. Non-thermal components are linked
to the cluster X-ray properties, and to the cluster evolutionary stage, and are
crucial for a comprehensive physical description of the intracluster medium.
They play an important role in the cluster formation and evolution. We review
here the observational properties of diffuse non-thermal sources detected in
galaxy clusters: halos, relics and mini-halos. We discuss their classification
and properties. We report published results up to date and obtain and discuss
statistical properties. We present the properties of large-scale magnetic
fields in clusters and in even larger structures: filaments connecting galaxy
clusters. We summarize the current models of the origin of these cluster
components, and outline the improvements that are expected in this area from
future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics
Review. 58 pages, 26 figure
Environmental risk analysis procedure applied to artificial turf sports fields
Introduction. Owing to the extensive use of artificial turfs worldwide, over the past ten years there has been much discussion about the possible health and environmental problems originating from Styrene-Butadiene Recycled rubber (SBRr). Materials and methods. In this paper the authors performed a Tier-2 environmental-sanitary risk analysis on five artificial turf sports fields located in the city of Turin (Italy) with the aid of RISC4 software. Two receptors (adult player and child player) and three routes of exposure (direct contact with crumb rubber, contact with rainwater soaking the rubber mat, inhalation of dusts and gases from the artificial turf fields) were considered in the conceptual model. Results and discussion. For all the fields and for all the routes, the cumulative carcinogenic risk proved to be lower than 10-6 and the cumulative non-carcinogenic risk lower than 1. The outdoor inhalation of dusts and gases was the main route of exposure for both carcinogenic and non-carcinogenic substances. The results given by the inhalation pathway were compared with those of a risk assessment carried out on a citizen breathing gases and dusts from traffic emissions every day in Turin. Conclusions. For both classes of substances and for both receptors, the inhalation of atmospheric dusts and gases from vehicular traffic gave risk values of one order of magnitude higher than those due to playing soccer on an artificial fiel
- …
