16 research outputs found

    Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands

    Get PDF
    Drained, lowland agricultural peatlands are greenhouse gas (GHG) emission hotspots and a large but vulnerable store of irrecoverable carbon. They exhibit soil loss rates of ~2.0 cm yr−1 and are estimated to account for 32% of global cropland emissions while producing only 1.1% of crop kilocalories. Carbon dioxide emissions account for >80% of their terrestrial GHG emissions and are largely controlled by water table depth. Reducing drainage depths is, therefore, essential for responsible peatland management. Peatland restoration can substantially reduce emissions. However, this may conflict with societal needs to maintain productive use, to protect food security and livelihoods. Wetland agriculture strategies will, therefore, be required to adapt agriculture to the wetland character of peatlands, and balance GHG mitigation against productivity, where halting emissions is not immediately possible. Paludiculture may substantially reduce GHG emissions but will not always be viable in the current economic landscape. Reduced drainage intensity systems may deliver partial reductions in the rate of emissions, with smaller modifications to existing systems. These compromise systems may face fewer hurdles to adoption and minimize environmental harm until societal conditions favour strategies that can halt emissions. Wetland agriculture will face agronomic, socio-economic and water management challenges, and careful implementation will be required. Diversity of values and priorities among stakeholders creates the potential for conflict. Successful implementation will require participatory research approaches and co-creation of workable solutions. Policymakers, private sector funders and researchers have key roles to play but adoption risks would fall predominantly on land managers. Development of a robust wetland agriculture paradigm is essential to deliver resilient production systems and wider environmental benefits. The challenge of responsible use presents an opportunity to rethink peatland management and create thriving, innovative and green wetland landscapes for everyone's future benefit, while making a vital contribution to global climate change mitigation

    Minimal model for aeolian sand dunes

    Full text link
    We present a minimal model for the formation and migration of aeolian sand dunes. It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The latter are shown to provide the characteristic length scale. The model can explain the origin of important features of dunes, such as the formation of a slip face, the broken scale invariance, and the existence of a minimum dune size. It also predicts the longitudinal shape and aspect ratio of dunes and heaps, their migration velocity and shape relaxation dynamics. Although the minimal model employs non-local expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve as a very efficient tool for analytical and numerical investigations and to open up the way to simulations of large scale desert topographies.Comment: 19 pages, 22 figure

    The Cosmolian program for simulating aeolian dynamics and its application to central Australia

    No full text
    International audienceThe wide spatial coverage of sand dunes in continental interiors makes the understanding of their activity and accumulation history valuable for palaeoenvironmental reconstructions and the interpretation of landscape evolution. Nevertheless, the study of aeolian landscape development at the million-year timescale is hampered by the complex interaction of factors determining dune migration and the inherently self-destructive nature of their chronostratigraphy, thus limiting the applicability of traditional dating methods. This study presents a standalone program that simulates aeolian transport based on luminescence-derived chronologies coupled with numerical modelling of the accumulation of cosmogenic nuclides. This integrative approach to modelling the history of aeolian landforms reveals phases of emergence of aeolian sand into the landscape, and provides a data-based scheme that facilitates the morphodynamical study of aeolian processes over multiple timescales and up to several millions of years. The application of the program for reanalysing previously reported data from the Australian Simpson Desert reveals multiple pulses of sand dispersion into central Australia at 3.8–3.4, 2.9–2.5 and 1.5–1 Ma, corresponding to pronounced changes in climatic conditions and landscape deformation events. The synchronicity of the results with the established environmental framework that would promote the production and aeolian distribution of sand exemplifies the applicability of process-based modelling in constructing a timeframe of key landscape evolution events in arid environments by studying aeolian deposits. The dependence of the parameters used to determine environmental settings on sand transportation patterns additionally makes the program a powerful tool to further investigate the triggers and mechanisms of aeolian processes

    Interactions between airflow and valley topography with implications for aeolian sediment transport

    No full text
    The local topography of a landscape can have a profound influence on airflow characteristics and cause modifications to broader synoptic scale winds. This paper reports the results of a preliminary field study examining the effects of a valley on wind velocity and direction. Anemometers and wind vanes were used to measure airflow characteristics upwind, within and downwind of a 20 m deep and 175 m wide dry valley in the central Namib desert. The field data indicate an upwind region of flow acceleration, a minimum in flow velocity in the center of the valley, flow acceleration toward a maximum at the downwind valley edge and subsequent deceleration toward starting velocities downwind of this edge. The development of a flow separation region at the leading edge of the valley and the range of flow distortion are affected by the incident angle of the approaching wind to the axis of the valley. A conceptual model indicating the potential implications of these findings for aeolian sediment transport processes in the vicinity of dryland valleys is presented

    Climate-surface-pore-water interactions on a salt crusted playa: implications for crust pattern and surface roughness development measured using terrestrial laser scanning

    Get PDF
    Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short-term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa-crust surface pore-water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10−3m; hours) co-located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra-red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non-elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts on the other hand showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasise how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles

    Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides

    No full text
    The Namib Sand Sea is one of the world’s oldest and largest sand deserts1, yet little is known about the source of the sand in this, or other large deserts2. In particular, it is unclear whether the sand is derived from local sediment or comes from remote sources. The relatively uniform appearance of dune sands and low compositional variability within dune fields3 make it difficult to address this question. Here we combine cosmogenic-nuclide measurements and geochronological techniques to assess the provenance and migration history of sand grains in the Namib Sand Sea. We use U–Pb geochronology of detrital zircons to show that the primary source of sand is the Orange River at the southern edge of the Namib desert. Our burial ages obtained from measurements of the cosmogenic nuclides 10Be, 26Al and 21Ne suggest that the residence time of sand within the sand sea is at least one million years. We therefore conclude that, despite large climatic changes in the Namib region associated with Quaternary glacial–interglacial cycles4, 5, the area currently occupied by the Namib Sand Sea has never been entirely devoid of sand during the past million years

    The dynamism of salt crust patterns on playas

    Get PDF
    Playas are common in arid environments and can be major sources of mineral dust that can influence global climate. These landforms typically form crusts that limit evaporation and dust emission, modify surface erosivity and erodibility, and can lead to over prediction or underprediction of (1) dust-emission potential and (2) water and heat fluxes in energybalance modeling. Through terrestrial laser scanning measurements of part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant amounts of dust), we show that over weeks, months, and a year, the shapes of these surfaces change considerably (ridge thrusting of >30 mm/week) and can switch among continuous, ridged, and degraded patterns. Ridged pattern development changes the measured aerodynamic roughness of the surface (as much as 3 mm/week). The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models
    corecore