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Abstract 

Sodium accumulating playas (also termed sodic or natric playas) are typically covered by 

polygonal crusts with different pattern characteristics, but little is known about the short-term 

(hours) dynamics of these patterns or how pore water may respond to or drive changing salt 

crust patterning and surface roughness. It is important to understand these interactions 

because playa-crust surface pore-water and roughness both influence wind erosion and dust 

emission through controlling erodibility and erosivity. Here we present the first high 

resolution (10-3m; hours) co-located measurements of changing moisture and salt crust 

topography using terrestrial laser scanning (TLS) and infra-red imagery for Sua Pan, 

Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged 

surfaces during periods of low temperature and high relative humidity. These peaks 

experienced non-elastic expansion overnight, of up to 30 mm and up to an average of 1.5 

mm/night during the 39 day measurement period. Continuous crusts on the other hand 

showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and 

the complex feedback patterns identified emphasise how processes both above and below the 

surface may govern the response of playa surfaces to microclimate diurnal cycles. 

Key Words: sodium sulphate, terrestrial laser scanning (TLS), aeolian dust source, playa 

polygon ridge dynamics, wind erosion 
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Introduction 

Playas (or salt pans; see Briere, 2000) are common in dryland landscapes and typically form 

salt or clay crusts which exhibit variable moisture both spatially and temporally (Bryant, 

2013; Cahill et al., 1996; Gillette et al., 2001; King et al., 2011; Nickling and Ecclestone, 

1981; Nickling, 1984). Quantifying moisture within salt containing crusts and sediments on 

playas is important because it is a major contributor to uncertainty in: i) surface energy and 

moisture balances (Bryant and Rainey, 2002; Burrough et al., 2009) ii) dust emission 

(Baddock et al., 2009; Bullard et al., 2011; Haustein et al., 2015; Prospero et al., 2002; 

Washington et al., 2003; Washington et al., 2006) and iii) salt accumulation rates and styles 

(Rosen, 1994; Tyler et al., 2006). We know that salt crusts can influence surface topography 

and patternation on playa surfaces in both a profound and rapid manner (crusts can develop at 

a rate of as much as 30 mm/week; Nield et al., 2015). Once developed, surface salt crust 

patterns can significantly alter surface and aerodynamic roughness and ultimately dust 

emission thresholds (Darmenova et al., 2009; Lancaster, 2004; MacKinnon et al., 2004; 

Marticorena and Bergametti, 1995; Nield et al., 2013b). Although remote sensing studies 

have attempted to depict crust moisture and roughness variability on playas over monthly 

timescales (Archer and Wadge, 2001; Bryant, 1999; Mahowald et al., 2003; Tollerud and 

Fantle, 2014; Wadge and Archer, 2002; Wadge and Archer, 2003); the results show 

significant spatial/temporal variability and are far from straightforward to interpret. 

Ultimately, we know very little about the small-scale temporal (hours) and spatial (mm) 

dynamics of interstitial or pore moisture patterns on playas, and how the interaction of the 

moisture with evaporite minerals relates to the development of both crust topography and 

subsequent crust pattern decay (Groeneveld et al., 2010; Webb and Strong, 2011). 
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Polygonal salt crusts (Figure 1) are commonly found on playas (Reeves, 1969), including at 

Owens Lake, USA (Gillette et al., 2001; Saint-Amand et al., 1986; Saint-Amand et al., 1987), 

Lake Eyre Australia (Bonython, 1956), and in the Atacama desert (Stoertz and Ericksen, 

1974). Polygonal pressure ridges form when expansive evaporite minerals precipitate at the 

surface of a playa through a combination of thermodynamic and geochemical mechanisms 

(Kendall and Warren, 1987; Krinsley, 1970; Lowenstein and Hardie, 1985; Pakzad and 

Kulke, 2007; Reeves, 1969). The accumulation of evaporite minerals on a playa surface is 

broadly controlled by a combination of water table depth, evaporation rates and the 

salinity/geochemistry of shallow groundwater; which is itself a function of basin 

inflow/closure (Tyler et al., 1997). Therefore playas with the most erodible crusts (providing 

opportunity for significant dust flux) typically form when saline groundwater is in close 

proximity to the playa surface (often < 1m); thereby maximising the impact of evaporation 

rates on the underlying groundwater, which can lead to movement of salts upwards through 

the sediment pile, development/breakdown of clay-rich sedimentary fabrics, and ultimately 

salt deposition at the surface (Buck et al., 2011; Reynolds et al., 2007; Rosen, 1994). In these 

cases, salt accumulation at the surface of playas can take place over time-scales ranging from 

hours to many thousands of years through free evaporation at the surface driving the 

movement and precipitation of evaporite minerals within the shallow capillary fringe (Tyler 

et al., 1997).  

Playa surfaces dominated by sodium-rich salts can be particularly responsive to changes in 

surface moisture/pore water (Legates et al., 2011; Pelletier, 2006; Reynolds et al., 2007) as 

these salts (both sodium carbonates and sulphates) readily alter their phase in response to 

threshold changes in temperature and humidity (Saint-Amand et al., 1986). For example, the 

dehydrated salt thenardite (Na2SO4) can hydrate to form mirabilite (Na2SO4•10H2O) which 

typically develops and remains stable when relative humidity exceeds 60 - 75% (the 
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equilibrium or deliquescence relative humidity RHeq) and where temperatures range between 

0 and 20°C (Kracek, 1928; Steiger and Asmussen, 2008). Indeed, it is typical for hydrated 

phases of sodium sulphate and sodium carbonate salts to decrease in solubility as temperature 

falls (e.g. Benavente et al., 2015). Ultimately, when reduction in temperature is rapid, the 

phase change to hydrated Na2-SO4/Na-2CO3 phases (e.g. thenardite smirabilite) can lead to 

an increase in the size of deposited salt crystals, often by fourfold or more, and is often 

accompanied by significant changes to the crystallisation pressure (Benavente et al., 2015; 

Saint-Amand et al., 1986; Tsui et al., 2003) resulting in further changes to internal surface 

crust structure, surface crust expansion and cracking. Within most playa systems (particularly 

those with pore water chemistry dominated by Na-CO3-SO4-Cl) a range of indicative 

hydration/dehydration evaporite mineral phase transitions may be achieved both within playa 

crusts (Drake, 1995; Eugster and Jones, 1979; Eugster and Smith, 1965) and the dust particles 

that they produce (Jentzsch et al., 2013). 

The microclimates of desert playas can be extreme with atmospheric- and pore-moisture 

fluctuating diurnally in response to changes in relative humidity, temperature, and depth to 

ground water. High diurnal temperature ranges mean that fluctuations in playa surface pore-

water concentration and chemistry are particularly significant both overnight and early in the 

morning (Groeneveld et al., 2010; Kampf et al., 2005). This general change in moisture 

availability at the sediment surface can be manifested either within the chemical structure of 

the evaporite minerals or as free water within the pores of the crust fabric (Mees et al., 2011). 

On playa surfaces, moisture transfer can occur both above and below any apparent crust 

through evaporation, capillary transport (Benavente et al., 2004; Benavente et al., 2011; 

Genkinger and Putnis, 2007; Grossi et al., 2011; Rodriguez-Navarro et al., 2000), and 

occasionally surface condensation (Kinsman, 1976; Thorburn et al., 1992). The effectiveness 

of these transfer processes depends on the geochemistry, the internal structure of the crust 
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(e.g. pore connectivity), the shape of the crust (as depicted in Figure 1), and the degree of 

connectivity between the crust and the underlying moist substrate (Peck, 1960; Turk, 1975). 

Thus, as a salt crust develops at the surface through precipitation of evaporite minerals, 

surface roughness and subsurface texture/connectivity can change dramatically. In addition, 

changes to the relative contribution of moisture inputs from release of water of hydrated 

minerals, as well as atmospheric or soil/groundwater sources are also apparent (Sanchez-

Moral et al., 2002). In particular, continuous, sealed crusts may reduce evaporation from the 

playa surface to extremely low levels (Gran et al., 2011; Groeneveld et al., 2010; Tyler et al., 

1997). Conversely, degraded, cracked or discontinuous crusts may encourage or control the 

spatial distribution of evaporation, moisture flux and surface efflorescence (Krinsley, 1970). 

Terrestrial laser scanning (TLS) is a non-invasive tool (Buckley et al., 2008) that is able to 

provide high resolution spatial information (millimetres) about salt crust surface change 

through time, both in terms of topography (Nield et al., 2015) and also various characteristics 

of surface properties derived from the intensity of the return signal (Lichti, 2005), including 

surface moisture (Armesto-González et al., 2010; Nield et al., 2011; Nield and Wiggs, 2011). 

Time-lapse cameras are also useful for examining changes in surface patterns. For example 

they have been used to identify i) ripple migration (Lorenz, 2011; Lorenz and Valdez, 2011), 

ii) salt crystal formation in heritage buildings (Zehnder and Schoch, 2009)) and iii) surface 

moisture (Darke et al., 2009; Darke and Neuman, 2008; McKenna Neuman and Langston, 

2006). 

Here, for the first time, we seek to untangle the behaviour of playa surfaces; and in particular 

surface, pore or hydrated salt moisture and polygonal pattern dynamics of salt crusts. We do 

this through three targeted experiments and identify for the first time how dynamic these 

surfaces are on a fine spatial and temporal scale (mm/hr). Initially (Experiment 1) we 
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examine nocturnal moisture changes on a crust with a mix of ridged and continuous sections 

over a 39 day period using infra-red (IR) imagery and determine the change in elevation at 

this site over the same period using TLS. Next, (Experiment 2) we use TLS to examine the 

relationship between topographic and moisture change for different crusted surfaces during 

the night and, finally, (Experiment 3) we determine how the crust dries at dawn, again using 

TLS. For each crust type we relate differences in moisture and topographic change to distinct 

temperature and relative humidity conditions; which are in turn used to infer geochemical and 

thermodynamic processes occurring in surface and groundwater within the critical zone. We 

limit our study to nocturnal and early morning changes because this is when evaporation rates 

are suppressed and the surface has the potential to remain moist through fluxes via subsurface 

capillary or atmospheric condensation mechanisms (Groeneveld et al., 2010; Kinsman, 1976; 

Sturman and McGowan, 2009; Thorburn et al., 1992) for a sufficient time and magnitude that 

can be detected by IR camera and TLS (Nield et al., 2011; Nield et al., 2014). 

Study Site 

Field experiments were conducted on Sua Pan, Botswana (site location is centred at 

20.5754°S, 25.959°E; See Figure 2) during the dry season in August, 2011 and August and 

September 2012. Sua Pan is a 3400 km2 wet terminal discharge playa (Rosen, 1994) with a 

predominantly trona [Na3H(CO3)2:2H2O], halite [NaCl] and thenardite[Na2SO4] crust 

(Eckardt et al., 2008; Vickery, 2014) and is part of the Makgadikgadi Pan complex; one of 

the southern hemisphere’s largest aeolian dust source areas (Prospero et al., 2002; Vickery et 

al., 2013; Washington et al., 2003; Zender and Kwon, 2005). Sua Pan periodically floods 

during the summer but the surface remains dry for most of the year (Bryant et al., 2007), with 

groundwater depths typically in the range 0.5-3.0 m over much of the pan (Eckardt et al., 

2008).  During the winter on Sua Pan, the mean climatic conditions include temperatures 
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ranges of 9.6˚C to 29.3˚C and 13.3˚C to 32.9˚C in August and September respectively and 

mean monthly rainfall is 0.3 mm and 4.7 mm respectively. The pan is covered by a polygonal 

salt crust with spatially varying topographic characteristics (Nield et al., 2015; Nield et al., 

2013b). Measurements for each experiment were collected at sites with three distinct crust 

types: (1) Ridged, (2) Continuous and (3) Mixed (Figure 1). Ridged surfaces consisted of 

well-formed, widely spaced, deep polygon ridges with some evidence of degradation and 

cracks within ridge surfaces and were composed of trona, halite and thenardite (Vickery, 

2014). The Continuous sites were dominated by flat crust with occasional small, closed 

ridges and were predominantly composed of thenardite, with some mirabilite, halite and trona 

(Vickery, 2014). Mixed sites contained more irregular surface crust patterns, predominantly 

continuous and flat but with some notable disconnected ridged portions. 

Methods 

Time-lapse camera data collection and processing 

Experiment 1 investigated the relationship between nocturnal moisture and climatic 

conditions using temporal series of LTL Acorn 5211A time-lapse camera images collected 

during 39 nights. A mixed surface (M1) was targeted to compare the response of ridged and 

continuous surfaces simultaneously with the same external climatic forcing. The camera was 

placed at a height of 1.5 m above the crust and programmed to record images every ten 

minutes with a resolution of 5 mega-pixels. The camera recorded true colour images 

passively during daylight and switched to active infra-red (IR) flash mode once its light 

sensor detected darkness (Figure 3). The photo sequences were post-processed to determine 

when the IR flash was used and a sequence of photos for each night were extracted between 1 

hour after darkness and 30 minutes before sunrise to exclude any residual sunlight 

interference with the imagery. Surface moisture on or near (e.g. moisture within the top mm 
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of the crust or water vapour derived from the crust) was then inferred from these IR photo 

sequences. The IR flash on the camera was 940 nm which is ideal for moisture detection 

because it is close to a key interstitial moisture absorption band for soils and sediments (Clark 

et al., 2007), and so lower digital numbers (DN; akin to reflectance factor) within an IR 

image were likely to correspond to higher moisture within the top few mm of the crust.  

Atmospheric conditions can also influence general reflectivity collected by this sort of 

imaging sensor, and so careful normalisation of crust reflectance values was undertaken using 

a standard grey calibration tile (15 x 15 cm) that was placed within the camera field-of-view 

on the surface of the crust. Similar links to decreased reflectance in response to higher pore 

moisture, or from minerals with greater structural or absorbed water, have been made in 

larger scale remote sensing of sodic playas by Mees et al. (2011). We therefore calculated 

mean DN values of 100 x100 pixel squares in each IR image for a) the calibration tile, b) a 

ridged crust and c) a continuous crust. The two crust sections were adjacent to each other and 

within the centre of the camera field-of-view (Figure 3). Mean values for the crust sections 

were then normalised using the calibration tile value for each individual image. We refer to 

this ratio as the dimensionless DN ratio (DNR). A DNR time-series collected in this manner 

gave us a non-invasive time-dependant index of surface absorption of the active infra-red 

light source; and is used here to infer variability in surface moisture with the playa salt crust. 

Further active IR measurements were collected in a similar manner using this approach at 

ridged (R3), mixed (M2) and continuous (C3) sites over a single night to enable a comparison 

of the IR and TLS relative moisture methods. DNR values were calculated in the same 

manner, using a calibration tile and a single 100 x 100 pixel crust section in the centre of the 

camera field-of-view. 
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TLS data collection and processing 

Experiment 1 was complemented by TLS measurement of surface change over the same 39 

night period. Crust topography was characterised on a) night 1 and b) night 39 using a time-

of-flight Leica Scanstation. The TLS was placed at a height of 2.3 m and undertook a 360° 

scan overnight with a specified resolution of 5 mm at 30 m distance. A 10 x 10 m section of 

points were extracted from registered scans for each of the two nights (mean registration error 

1 mm). Elevation points were gridded using mean values and 1 cm spacing, and empty cells 

were interpolated in MATLAB (Mathworks Inc) using the natural neighbour method and the 

surfaces were differenced to determine total change.  

TLS return signal intensity (532 nm) has been documented as a useful tool for examining 

surface moisture on sand, particularly within a range 0 to 4 % gravimetric moisture content 

(Kaasalainen et al., 2008; Nield et al., 2011) and salt crusts, including surfaces sprayed with 

up to 800 ml/m2 (Nield et al., 2014). TLS is ideal for measuring changes in moisture on the 

playa surface, as it indicates the relative moisture of the crust at the surface (sub-mm), which 

is important for dust emission thresholds, rather than a depth averaged measurement as 

typically recorded by theta probes (Edwards et al., 2013). We indicate relative moisture 

change by normalising the nocturnal return signal intensity by daytime values on the same 

surface following the methods of Nield et al. (2014). This comparison excludes any influence 

of distance (metres) on intensity values (Burton et al., 2011; Nield et al., 2013a; Nield et al., 

2014) because each nocturnal value is normalised by the coincident value measured at the site 

during the previous day. Lower ratio values indicate an increase in moisture on the crust 

because more of the TLS signal has been absorbed. 

In experiment 2 we use both the elevation and relative moisture capabilities of the TLS to 

extend experiment 1 and link nocturnal changes in moisture to changes in crust topography. 
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We investigated two ridged (R1, R2) and two continuous (C1, C2) crust surfaces to explore 

the crust topography-moisture change relationship under different climate conditions. For 

experiment 2 nocturnal surface changes were assessed using four coincident 1 m x 2 m 

sections of crust (Figure 4). Initial scans of these four areas were undertaken during the day 

(before 16:40, scan times indicated in Table 1) to determine the daytime surface topography 

and surface dryness. These small pre-nocturnal scan sections took approximately 5 minutes to 

acquire, had an average point density of 34,500 points/m2, and were located at a Euclidean 

distance of approximately 12.2 m from the scanner location and approximately 90° from each 

other. During the 360° nocturnal scan, three of these areas were rescanned overnight and the 

final area was rescanned after sunrise (Figure 4; see Table 1 for scan, sunset and sunrise 

times). These co-located repeat scan sections were then used to determine overnight and post-

nocturnal net topographic change using the same topographic methods as experiment 1. 

Relative moisture change was determined from the same TLS point measurements over these 

co-located repeat scan sections following the methodology of Nield et al. (2014) and outlined 

above. For TLS moisture ratios, average intensity values for each 1 cm2 grid cell were 

smoothed using a 9 x 9 cm moving window to reduce the influence of mixed pixels due to the 

laser footprint size (Hofle and Pfeifer, 2007; Nield et al., 2011). The 360° scan values for 

each co-incident 1 cm2 grid cell were then normalised using the daytime small section grid 

cell values to determine overnight and post-nocturnal relative moisture change and recovery. 

In experiment 3 we explore the relationship between climatic conditions and crust drying at 

dawn when atmospheric temperatures increase. For this experiment, a small section of the 

same ridged crust (1 x 2 m) was scanned over a two day period when climate varied (R4, R5). 

TLS measurements of the surface were repeated hourly before (5:40) and after (6:40, 7:40) 

sunrise. This area was also located at a Euclidean distance of 12.2 m from the TLS. Changes 

in moisture were calculated using the same methods as experiment 2. 
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The TLS was unable to detect changes in topography or moisture during the day. Spatially 

coincident daytime scans at a ridged site measured during the same day had uninterpolated 

elevation differences of less than 3 mm which is within the error range estimated by Hodge et 

al. (2009) for repeat scans of stony surfaces. Relative TLS moisture ratios measured during 

the day on the same crust surface did not detect any moisture change.  

At each site examined in experiments 2 and 3 (R1, R2, R4, R5, C1, C2), 12 m x 12 m 

sections of points were extracted from an overnight 360° scan and processed into surfaces 

using the same methods as experiment 1. Additional scans were also undertaken following 

the same collection and processing methods as experiment 2 at a mixed (M2) and ridged (R3) 

site to enable a comparison of TLS and IR camera relative moisture calculations. Ridge width 

and spacing was calculated for all surfaces measured by TLS using the zero-up- and down-

crossing method (Goda, 2000) to identify individual ridge units on 1 cm resolution transects, 

following the methods of Nield et al. (2013b). 

Near-surface and sub-surface climate and geochemistry 

TLS and camera data were supplemented with a range of additional meteorological 

measurements pertinent to examining atmospheric surface and subsurface feedbacks. 

Temperature and relative humidity were measured every ten minutes below the crust during 

experiments 1 and 2 using DS1923 iButtons (Maxim Integrated). These were inserted at each 

site approximately 1 cm beneath the crust at least two weeks before measurements 

commenced and several metres away from the section of crust being measured with the TLS 

to minimise any crust disturbance. An additional iButton was placed directly on top of the 

crust in a flat section for the experiment 3. Temperature and relative humidity at 1 m above 

the surface were also recorded every 10 minutes throughout the experiments in the centre of 

the study area using a CS215 (Campbell Scientific, Inc) temperature and relative humidity 
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probe, housed in a radiation shield.  Delta T theta probes recorded gravimetric moisture 

content integrated over a depth of 2 cm from the surface. Theta probe measurements were 

averaged to indicate daily mean values. 

Across the field site, shallow groundwater samples were collected to investigate the 

geochemistry of natural water within the capillary/critical zone. Using a sterile pump 

sampler, water samples were extracted from pre-installed dip-wells. Groundwater depths 

ranged from 0.5-1.3m across the study area.  In situ measurements of water temperature and 

pH were obtained at the time of sample collection. Samples were then immediately sealed, 

bagged in a light-tight container and were returned to the laboratory for analyses with 

minimal change in sample temperature. Once in the laboratory, standard methods were used 

to derive major cation and anion species (see Eckardt et al., 2008). As Benavente et al., 

(2015) outline, salt precipitation in a solution can occur through (i) changes in relative 

humidity (to reach the RHeq), (ii) changes (often reduction) in temperature which can invoke 

changes in mineral solubility, and (iii) via dissolution of lower hydrated forms and the 

precipitation of the hydrated salts through changes in thermodynamic conditions. We provide 

here simulations of key components of these processes, using PHREEQC version 3.2  

(Parkhurst and Appelo, 1999) with the Pitzer Database (Bryant et al., 1994) in order to 

characterise the stability and presence of likely mineral phases from the Na2SO4-H2O and 

Na2CO3-H2O systems under a range of recorded surface conditions.  

Crust and underlying sediment samples were also analysed for bulk salt content. Surface 

sediment samples were sealed in bags and returned to the laboratory where soluble salts were 

removed using a standard rinse treatment with distilled water to determine the percentage 

mass of soluble salts present. 
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Results 

Crust samples from the centre of the study site in 2011 had up to 82 % soluble salt by mass, 

whilst the underlying sediment contained up to 51 % soluble salt.  In 2012 soluble salts by 

mass ranged from 57.7 to 76.9 % on the crust surface (Table 1). Generally, samples of 

shallow groundwater water displayed a pH > 9, and had high conductivity values (> 300,000 

µS/cm). Analysis of mineral saturation data via PHREEQC (Bryant et al., 1994) suggest that 

typical shallow groundwater at our sites sampled at temperatures of between 20oC and 25oC 

were readily able to precipitate (i.e. were either saturated or supersaturated with respect to) a 

range of key Na2SO4-H2O and Na2CO3-H2O evaporite phases (Table 2 (a)).  

Using PHREEQ we were able to determine key mineral components within our groundwater 

samples. At in situ daytime sample temperatures of between 20C and 25C, groundwater 

samples were generally saturated with respect to CaCO3 phases (Calcite, Dolomite, Huntite) 

and undersaturated with regard to both Na2SO4-H20 (thenardite, mirabilite ) and Na2CO3-H2O 

(Natron, Trona, Nacholite) phases. However some samples were initially saturated with 

regard to Nacholite (NaHCO3) Pirssonite (Na2Ca(CO3)2:2H2O) and Gaylussite 

CaNa2(CO3)2:5H2O; suggesting that these phases could be present at the groundwater 

interface. Given these data, we were then able to simulate changes in mineral saturation 

within the samples as temperatures were either lowered or raised (i.e. from 0°C to 60°C) 

without further evaporation.  In the first instance (Table 2), we found that as temperatures 

tended towards 0°C, mirabilite consistently reached super-saturation, Nacholite became 

under-saturated, and Pirssonite/Gaylussite were unaffected. Thereafter, as the temperatures 

were increased above 30°C (Table 2 (b)) we observed supersaturation with respect to Trona 

and Nacholite. 
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For each sample, we were able to use PHREEQ to forward-model the evaporation process in 

order to chart the precipitation (expressed as a molar yield) of likely key evaporite phases as 

the groundwater sample becomes concentrated over time; simulating the capillary rise and 

evolution of moisture as it moves to the surface. Given the importance of night-time 

temperature and RH, these experiments were undertaken at, 3°C, 8°C, 12°C, 20°C (Table 2 

(c)). Importantly these data suggest that further evaporation of our samples at 20°C and above 

would yield a surface evaporite mineral assemblage of Thenardite and Trona with additional 

Pirssonite. As the temperature was systematically reduced to 3°C we found that the evaporite 

mineral assemblage changed to Halite, Mirabilite, Trona, and Pirssonite. The change in 

Mirabilite/Thenardite stability was observed to be apparent as the temperature dropped below 

18°C. These experiments therefore highlight two key factors which can help us understand 

salt crust and moisture dynamics on our field site: (1) the confirmed presence of key Na2SO4-

H2O and Na2CO3-H2O evaporite phases (Thenardite, Mirabilite, Trona, Pirssonite, with 

ancillary Halite), and (2) the likely hydration/dehydration of Mirabilite/Thenardite under 

observed conditions in the presence of moisture. 

TLS topographic measurements show three distinct ridged, continuous and mixed surface 

patterns (Figure 5).  Mean ridge heights and widths range from 0.018 m and 0.2 m on well-

developed ridged surfaces, to 0.004 m and 0.08 m on continuous surfaces (Table 1). 

TLS ratio and DNR measurements both indicate a similar synchronous variation in mean 

relative surface moisture for the different crust types (R2 = 0.98; Figure 6). Co-incident theta 

probe moisture measurements integrated over the top 2 cm of each crust follow the same 

consistent trend as the TLS and DNR measurements and, specifically, the ridged surfaces are 

highlighted as being the driest and the continuous surfaces as the wettest. Surface or pore 

moisture also varied within each sample, with changes closely following the apparent 



 

This article is protected by copyright. All rights reserved. 

topographic patterning. This was most noticeable on mixed and continuous crust examples 

(Figure 6c and 6e) where the inferred moisture had the greatest standard deviation. 

Experiment 1: Changes in moisture on a mixed surface 

During experiment 1 relative humidity and temperature at site M1 were inversely correlated 

(coefficient = -0.65), with high humidity and low temperatures experienced overnight (Figure 

7 a).  In general, the ridged area at M1 was drier than the continuous surface (Figure 7 b).  

However, on nights with high relative humidity (>70%; 14 occasions during the measurement 

period) the IR camera data showed that the DNR on the ridges dropped below the DNR 

observed on the continuous areas (approximately 1.4).  During these periods when night-time 

relative humidity was high, the moisture of the continuous areas remained stable (9 

occasions) or only increased by a small amount (<0.1), whereas a much larger increase 

(>0.28) in moisture was observed on the ridges. Importantly, this indicated that: (a) moisture 

on crust ridges fluctuated more than moisture on continuous crusted surfaces and (b) that 

ridged components of crusts were significantly more responsive to changes in atmospheric 

relative humidity. Mean overnight wind speeds during the measurement period varied from 

0.68 m/s to 6.1 m/s, and did not appear to influence the responsiveness of the ridged surfaces 

(correlation coefficient  = 0.09). 

Interestingly, during experiment 1 the ridges on the mixed crust surface were seen to change 

significantly in both elevation and width (Figure 8); by as much as 1.5 mm/night on larger 

ridges. However, at the same time, continuous crusted areas remained relatively static 

(asymmetric distribution; mean elevation change = 0.187 mm/night; Figure 8c).  This 

differential spatial trend in development in the ridged components of crusts is confirmed by a 

positive correlation between initial surface elevation and overall expansion (0.45; Figure 8d). 
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Experiment 2: Topographic and moisture change for different crusted surfaces  

When observing ridged (R1, R2) and continuous (C1, C2) surfaces we can see that surface 

moisture within the crusts responded to climatic conditions in a similar way to the mixed 

surface (M1; experiment 1). Minimum temperature and maximum relative humidity values at 

1 m above the surface varied during each of the four nocturnal study periods (R1, R2, C1, C2; 

Figure 9). Importantly, overnight surface temperatures at 1 m for an example of each crust 

type (R1, C2) were seen to drop below the 10°C threshold, that Saint-Amand et al. (1986) 

and Gillette et al. (2001) suggested was important for the salt phase switch from thenardite to 

mirabilite on Owens Lake. This period of low temperature also corresponded to an increased 

relative humidity at 1 m (> 60 %) indicative of a thenardite to mirabilite phase change. All of 

our relative humidity measurements were below 75 % which previous studies suggest is the 

minimum relative humidity required to observe overnight condensation on halite dominant 

crusts (Kinsman, 1976; Thorburn et al., 1992). Wind speeds were low and similar during each 

experiment (Table 1). 

The morphology of the crust was observed to have a significant impact on sub-crust 

micrometeorology. At the ridged sites (R1, R2), cracks within the crust enabled the relative 

humidity below the crust on the ridged area to increase at a similar rate to that measured at 1 

m above the surface (Figure 9). The subsequent decrease in relative humidity at dawn below 

the crust lagged behind the above crust relative humidity by an average of 1.5 hours. In 

contrast, the closed continuous crusts (C1, C2) maintained a high and stable sub-crust relative 

humidity throughout the experiment periods (Figure 9). This stability in relative humidity 

was irrespective of the conditions measured at 1 m height.  

The nocturnal change in moisture in response to overnight decreases in temperature and 

increases in relative humidity was also seen to vary depending on crust type observed. In 
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general, the ridged surfaces had a topographically controlled and spatially organised response 

(Figures 10 and 11). Overnight, ridged areas of crusts became progressively moister 

(elevation and TLS intensity ratio negatively correlated; Table 3), while continuous areas of 

crusts (between ridges) remained at, or close to, daytime moisture levels. The moistening of 

ridged areas was seen to be strongest during the night where high relative humidity 

conditions prevailed (correlation coefficient -0.63; Figure 11 R1). During the night with 

lower relative humidity (R2), the TLS only detected an increase in moisture on the upper 

sections of ridges (correlation coefficient -0.03; Figure 11 R2). Importantly, we observed that 

all crust surfaces quickly returned to typical daytime moisture values in the morning (9:00, 

9:50 for R1 and R2 respectively); almost entirely replicating the same TLS intensity values as 

observed on the previous day. 

Overnight change in surface elevation on the ridged surfaces was observed to vary depending 

on the prevailing atmospheric conditions (Figure 12). During the evening with high relative 

humidity (Figure 12a R1), the continuous parts of the surface (between ridges) swelled by an 

average of 3 mm, whilst ridges either expanded or opened (mean coefficient for ridge areas 

and increased elevation = 0.21). Some isolated ridge sections changed their elevation by up to 

30 mm; an order of magnitude higher than the continuous crusted areas. However, by 9.00 

am, the continuous sections of crust had sunk back to their normal daytime elevation; but 

some ridge expansion remained. During the warmer, drier evening (Figure 12b R2), there was 

no detectable change in the continuous (inter-ridge) areas (mean elevation change less than 1 

mm), but irreversible ridge expansion still occurred (maximum 8 mm). 

Notably, the overnight moisture patterning of the continuous crusts was not correlated to 

topography (Figures 10 and 11; Table 3). Instead, small, isolated patches on the surface 

became moister overnight and returned to daytime values in the morning. The TLS 
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measurements show that moistening was greater on the warmer, drier night (C1), and the 

surface dried more slowly on the cooler night (C2), when some moist patches were still 

measurable at 7:30am. There was minimal surface swelling overnight on the continuous 

surfaces (mean values ~2 mm), within the detection limits of the TLS and without spatial 

coherence. In contrast to the ridged surfaces the continuous surfaces returned to the same 

elevation as the previous day after sunrise. 

Experiment 3: Early morning changes in moisture on a ridged surface  

During the dawn drying experiment (3) the atmospheric relative humidity at 1 m above the 

crust was high on the first morning (maximum 83%; R4) and moderate on the second 

morning (maximum 70%; R5; Figure 13). During this experiment moisture was observed to 

be greatest on the ridged areas, while the continuous areas remained relatively constant 

(Figure 14). On the morning with high relative humidity (17th September 2012), the overall 

surface took longer to return to its daytime moisture levels; some ridges still indicated higher 

moisture levels 1.5 hours after sunrise. On the moderately humid morning (18th September) 

the majority of the surface had returned to daytime moisture levels 1.6 hours after sunrise. 

The IR camera (Figure 7b) on the mixed site (M1) demonstrated that on the night of the 16-

17th September, the DNR of ridged surface dropped from 1.48 to 1.095, indicating a 

significant increase in moisture. IR camera DNR measurements during the night with 

moderate relative humidity (17-18th September) agree with TLS findings and show a smaller 

ridge moisture increase (DN ratio 1.48 to 1.145). 

Atmospheric conditions, crust dynamics and the sodium sulphate phase diagram 

Results from experiment 3 show how responsive crust dynamics can be to variable 

atmospheric conditions. During the drier (RH 70%) morning of the 18th (R5), the crust 

temperature/relative humidity temporal trajectories are close to, or within the thenardite 



 

This article is protected by copyright. All rights reserved. 

stability zone of the thenardite-mirabilite phase diagram (Figure 13; Kracek, 1928; Steiger 

and Asmussen, 2008), while on the cooler, more humid morning of the 17th (R4), the first two 

measurements fall within the mirabilite stability zone. Given that the initial findings from 

geochemical modelling of groundwater also confirm that these phases are likely to be present 

under these conditions, we use this phase diagram as a proxy for the likelihood that the salts 

will absorb atmospheric and surface moisture when temperature and relative humidity are 

conducive to sodium sulphate mineral hydration (mirabilite formation). The phase diagram 

itself describes the stability thresholds for pure samples of thenardite and mirabilite. Thus, 

although we have shown that our crusts are more likely to be made up of intricate mixtures of 

sodium sulphate/carbonate evaporites and other minerals (clays, clastic, halite, etc), it is clear 

that the relative stability of these surfaces will still be governed by differential changes in 

atmospheric and surface temperature and humidity observed both within and above the 

surface crusts. Therefore, although the maximum relative humidity at 1 m above the surface 

for both nights was within the mirabilite stability zone (Kracek, 1928; Steiger and Asmussen, 

2008), conditions remained in this zone for a much longer period on the 17th. By sunrise 

(6:08) on the 18th, the measurements at 1 m height were situated on the mirabilite-thenardite 

boundary, and measurements on the continuous surface were inside the thenardite stability 

zone (Kracek, 1928; Steiger and Asmussen, 2008). On the 17th, both the 1 m and continuous 

surface measurements of temperature and humidity remained in the mirabilite stability zone 

until half an hour after sunrise (6:40 am), which agrees with similar observed magnitudes of 

the intensity TLS ratios for the 5:40 am and 6:40 am scans (Figure 14). On both days, 

measurements of temperature and relative humidity at 2 cm and 5 cm below the continuous 

crust remained inside the mirabilite stability zone. We therefore attribute crust dynamics at 

these sites to the relative diurnal hydration and dehydration of key sulphate bearing evaporite 

phases. 
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Importantly, the longer IR camera sequence from experiment 1 (M1) also follows a similar 

phase- shifting behaviour within the mirabilite/thenardite phase diagram (Figure 15). 

Maximum overnight relative humidity values were again within the mirabilite stability zone 

on the sodium sulphate phase diagram when the ridge DNR dropped below the continuous 

DNR. Further indicative evidence of moisture-flux was also apparent, as condensation was 

observed on the ridge crests in the early morning true-colour pictures during these 

exceedance periods (Figure 3d). Significantly, these observations agree with the Groeneveld 

et al. (2010) postulation that increased overnight moisture measured on the surface of Owens 

Lake was due to topographic control and atmospheric water condensing on the surface of 

ridges. Similar observations of surface moisture condensation on ridges overnight have been 

made by Sanchez-Moral et al. (2002). Together, our data provide the first direct evidence 

linking atmospheric conditions, spatially and temporally explicit salt crust dynamics and 

likelihood of sodium sulphate phase variability. 

Feedbacks and implications of crust and moisture patterns 

We have shown that the diurnal variation of moisture on a salt crust is linked to the crust 

topography (Figure 10; Table 3). These observed patterns may be controlled by a number of 

different micrometeorological, chemical, hydrological and physical processes and more data 

is required to explore the controls on surface pattern development. It is likely that the distinct 

pore-water-topography relationship may also enhance patterns in crust geochemistry at a 

similar micro-scale, and this leads us to further question this relationship. For example i) does 

the surface moisture patterning relate to changes in salt hydrology, or the condensation and 

evaporation of free water; and ii) does the elastic and inelastic expansion of the crust relate to 

salt phase changes and different capillary efficiency through variable pore spacing. Clearly, 

future studies are needed that combine detailed surface data with evaporation measurements 
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(e.g. Groeneveld et al., 2010) and chemical analysis (e.g. spectroscopy, XRD and SEM; e.g. 

Drake, 1995; Buck et al., 2011;) to explore these intricate but important crust-geochemistry 

relationships. The crusts on Sua Pan are predominately fine grained and abiotic but in general 

variable physical (e.g. salt grain size and shape; Rad and Shokri, 2014; Singer et al., 2003) 

and microbiological (e.g. Acosta-Martinez et al., 2015; Rasuk et al., 2014; Viles, 2008) crust 

constituents also likely modulate or enhance surface pattern change by changing moisture 

absorption, crust elasticity, cohesion and porosity. Further, whilst our study highlights the 

complex behaviour of sodium sulphate rich salt crusts, more studies need to be conducted on 

geochemically diverse playas to determine the interplay of salts and clays in the construction 

of crust patterns. 

Our data also emphasise that the development of different surface patterns over time is likely 

to be controlled by complex feedbacks between above and below-crust moisture transfers; 

fluxes which ultimately have the potential to modify salt chemistry and thereby influence 

topographic change rates and magnitudes . These environmental processes also exert 

fundamental and significant change on surface roughness (Nield et al., 2013) and likely pore 

connectivity (Nickling and Ecclestone, 1981) which can in turn alter atmospheric and 

subsurface moisture transfer rates respectively; and ultimately surface erodibility (Saint-

Amand et al., 1986) and evaporation rates (Groeneveld et al., 2010). 

Although the continuous surfaces that we monitored experienced some increase in moisture 

and minimal surface expansion overnight (Figure 11), this was patchy and likely controlled 

by heterogeneity within the geochemistry, pore spacing and topography (Eloukabi et al., 

2013). While the surface expansion was possibly a result of crystal growth either on or below 

the crust and potentially interactions with hygroscopic clay minerals, the elastic behaviour of 

these surfaces was notable. That they returned to their original topographic state at dawn, 
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suggests that an initial phase of topographic perturbation may be needed to help induce crust 

expansion and thrusting. Surface perturbations could be internally driven, or the consequence 

of external disturbances including animals, motor vehicles, dust devils or thunderstorms. 

Ultimately the need for perturbation stimulus may account for the reduced rate of change 

measured on these flat, continuous and relatively homogeneous surfaces (Figure 8c) as they 

have a much reduced propensity to the range of possible feedbacks mentioned above.  These 

findings agree with observations of moisture driven crust patterns made at a larger-scale 

(Nield et al., 2015) and elucidate the importance of surface and atmospheric moisture fluxes 

in enhancing polygonal pressure ridge pattern development. 

In terms of surface morphometric change, the observed thrusting of crust ridges agrees to 

some extent with the conceptual efflorescence and polygon thermal thrust model proposed by 

Krinsley (1970), particularly the assertion that maximum expansion occurs on the ridge 

crests. However, unlike the Krinsley model, we observed maximum expansion of ridges 

overnight, suggesting that differential salt efflorescence and surface hydration also play a role 

in crust surface expansion and contraction. Importantly, we find that the rapid rates of 

polygonal development (>30 mm/week) found by Nield et al. (2015) can occur in a single 

night on isolated crust sections given ideal temperature and relative humidity conditions 

(Figure 12a). This has significant implications for our understanding of changes in surface 

roughness (i.e. magnitude, rate, range) and represents a phase change in our understanding of 

the time-scales over which aerodynamic roughness and emission thresholds can change on 

surfaces that emit significant quantities of dust. 
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Conclusions 

There is a complex relationship between patterns of surface topography and moisture 

response on sodic playas. Here we show the first high resolution (TLS) measurements of 

nocturnal complex surface change on a salt crust. Significantly, we identify temporal surface 

feedbacks between moisture and crust morphology to aid in our understanding of playa dust 

emissivity and evaporation variability. 

Inelastic surface expansion is limited to ridged areas with higher topography, which also 

exhibit a temporary increase in moisture overnight. Continuous areas are less responsive to 

changes in atmospheric relative humidity, showing a reduced increase in non-spatially 

coherent moisture overnight and a slight, elastic increase in topography. These high 

resolution measurements of fast acting diurnal surface changes and the feedbacks both above 

and below the surface on moisture, potential sulphate salt phase and crust roughness, provide 

the first physical evidence of diurnal small-scale (mm) pattern changes on a dynamic, dust 

emitting playa and the ability of these moisture-pattern interactions to facilitate the 

development of polygonal ridges. Understanding how these ridges develop is important for 

accurately characterising surface roughness and evaporation rates which will enable the 

improvement of dust emission and evaporation model predictions. 
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Table 1 Site locations, descriptions and sample times. 

Crust Type 
Site 
Nam

e 

Location 
Samp

le 
archi
ve 

name 

Sample 
Start 
Date 

TLS 
Sample 
Times 

Sunset 
on 

start 
date 

Sunrise 
on 

followi
ng day 

Bulk salt content (%) Ridge Dimensions (m) 
Temperature at 1 m 
above surface (o) 

Relative Humidity 
at 1 m above surface 

(%) 

Wind Speed at 
1.68 m above 
surface (m/s) 

Latitu
de 

(oS) 

Longitu
de (oE) 

Elevati
on (m) 

Crust 
surfac

e 

Sediment 
immediat

ely 
below 
crust 

Subsur
face 

sedim
ent 

Mean 
Height 

Maxi
mum 

Height 

Height 
Standard 
Deviation 

Mean 
Width 

Mean 
Wave 
length 

Mean 
Mini
mum 

Maxi
mum 

Mean 
Mini
mum 

Maxi
mum 

Mean 
Mini
mum 

Maxi
mum 

Ridged 

R1 
20.60

32 
25.9301 910.79 D10 

8/18/201
1 

15:30, 
19:50, 
00:05, 
4:20, 
9:00 

18:03 6:35 - - - 0.018 0.067 0.011 0.200 0.316 15.07 5.57 26.96 46.81 17.19 70.87 2.40 0.29 8.27 

R2 
20.60

32 
25.9301 910.79 D10 

9/19/201
2 

16:00, 
18:10, 
22:00, 
2:00, 
9:50 

18:11 6:07 - - - 0.012 0.089 0.010 0.131 0.214 23.01 9.34 36.81 34.29 14.46 58.32 2.13 0.16 7.53 

R3 
20.60

32 
25.9301 910.79 D10 8/5/2012 - 17:59 6:43 60.1 45.5 32.3 0.012 0.080 0.010 0.135 0.218 17.39 7.76 29.65 36.53 17.93 58.90 2.88 0.03 8.25 

R4 
20.55

85 
26.0071 909.76 L5 

9/17/201
2 

5:40, 
6:40, 
7:40 

18:11 6:09 - - - 0.018 0.070 0.010 0.161 0.292 19.30 9.72 29.30 49.82 19.23 84.80 2.93 0.03 9.65 

R5 
20.55

85 
26.0071 909.76 L5 

9/18/201
2 

5:30, 
6:40, 
7:50 

18:11 6:08 - - - 0.018 0.070 0.010 0.161 0.292 20.73 9.34 34.95 40.95 16.19 78.97 2.23 0.28 6.49 

Continuous 

C1 
20.61

26 
25.9876 909.95 J11 

8/22/201
1 

13:15, 
19:00, 
23:15, 
3:30, 
7:45 

18:04 6:32 - - - 0.004 0.021 0.003 0.080 0.128 19.16 10.77 32.75 30.10 11.23 53.23 3.85 0.78 
10.2

6 

C2 
20.55

85 
26.0071 909.76 L5 8/3/2012 

16:00, 
19:40, 
3:30, 
7:30 

17:59 6:44 76.9 56.4 25.4 0.008 0.043 0.005 0.176 0.270 16.46 6.81 27.68 48.27 24.12 74.49 2.03 0.13 5.06 

Mixed 
M1 

20.57
60 

25.9111 911.09 B7 8/2/2012 - 17:58 6:45 57.7 33.8 38.8 0.006 0.085 0.007 0.127 0.172 16.95 6.81 30.12 42.50 17.40 74.49 2.10 0.11 5.06 

M2 
20.54

93 
25.9785 910.05 I4 

04/08/20
12 

- 17:59 6:44 69.6 40.1 17.5 0.018 0.072 0.010 0.167 0.283 16.97 8.01 29.04 42.28 21.96 60.71 1.85 0.03 4.18 
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Table 2 (a) Typical geochemistry of groundwater samples taken from the study site. 

Sample 
Code 

Location 
Water 
Table 
Depth 

Cl Br SO4 K Na Mg Ca Alkalinity  pH Temperature 
Conductivity 

(20C) 

Latitude 
(oS) 

Longitude 
(oE) 

cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l 
 

C microS/cm 

FR11-
L5 

20.5585 26.0071 52 94822.8 142.6 8659.2 3184.8 86512.3 3.4 16.4 39010.0 9.3 20.5 274738.0 

FR11-I8 20.5936 25.978 74 120726.5 203.3 12812.5 3987.9 113005.0 2.8 13.5 51110.0 9.5 22.0 408267.0 
FR11-

G6 
20.5754 25.959 121 116820.0 186.1 12575.5 4180.5 108220.7 3.5 10.8 48670.0 9.8 23.0 393631.0 

 

Table 2 (b) Mineral saturation data for sample FR11-G6 with changes in temperature derived using PHREEQ. 

Phase Equation 0 5 10 15 20 25 30 35 40 45 50 Temperature C 

Calcite CaCO3 2.56 2.62 2.67 2.72 2.78 2.83 2.88 2.93 2.98 3.02 3.07 
 

Dolomite CaMg(CO3)2 4.22 4.33 4.43 4.53 4.62 4.71 4.8 4.88 4.96 5.03 5.1 
 

Gaylussite CaNa2(CO3)2:5H2O 2.6 2.64 2.68 2.72 2.76 2.8 2.83 2.86 2.89 2.92 2.94 
 

Halite NaCl -0.17 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.17 -0.17 -0.18 -0.18 
 

Huntite CaMg3(CO3)4 3.95 4.23 4.51 4.79 5.07 5.36 5.64 5.93 6.22 6.52 6.81 
 

Magnesite MgCO3 1.17 1.17 1.16 1.16 1.15 1.14 1.13 1.12 1.11 1.09 1.08 
 

Mirabilite Na2SO4:10H2O 0.16 -0.08 -0.31 -0.53 -0.74 -0.93 -1.12 -1.3 -1.46 -1.62 -1.76 
 

Nahcolite NaHCO3 -0.15 -0.07 -0.01 0.05 0.09 0.14 0.17 0.2 0.22 0.24 0.25 
 

Natron Na2CO3:10H2O -0.89 -0.85 -0.81 -0.77 -0.74 -0.7 -0.67 -0.64 -0.61 -0.59 -0.56 
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Pirssonite Na2Ca(CO3)2:2H2O 2.75 2.8 2.84 2.88 2.92 2.96 2.99 3.02 3.05 3.08 3.1 
 

Thenardite Na2SO4 -1.08 -0.98 -0.9 -0.83 -0.77 -0.71 -0.67 -0.63 -0.59 -0.56 -0.54 
 

Trona Na3H(CO3)2:2H2O -0.32 -0.2 -0.09 0.01 0.1 0.18 0.25 0.31 0.36 0.4 0.44 
 

 

Table 2 (c) Initial molar yield of key equilibrium mineral phases from sample FR11-i8 under evaporation at four different temperatures; 

derived using PHREEQ. 

Phase Equation 20 12 8 3 Temperature C 

  
Moles in Assemblage 

    
Halite NaCl 0.00 9.04 8.99 8.94 

 

Magnesite MgCO3 1.88 8.94 9.14 9.36 
 

Mirabilite Na2SO4:10H2O 0.00 19.53 19.78 19.96 
 

Nahcolite NaHCO3 0.00 0.00 0.00 0.00 
 

Natron Na2CO3:10H2O 0.00 0.00 0.00 0.00 
 

Pirssonite Na2Ca(CO3)2:2H2O 11.88 18.94 19.14 19.36 
 

Thenardite Na2SO4 15.08 0.00 0.00 0.00 
 

Trona Na3H(CO3)2:2H2O 19.72 20.09 20.06 20.00 
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Table 3 Correlation coefficients between surface elevation and intensity TLS ratio 

for ridged and continuous site overnight measurements. See Table 1 for 

actual times at each period. 

 
Time period 

Surface 

R1 R2 C1 C2 

Correlation coefficient between 
elevation and intensity ratio 

1 -0.18 0.12 0.23 0.04 

2 -0.63 -0.03 -0.05 nan 

3 -0.48 0.10 0.16 -0.07 

4 0.12 0.02 -0.10 -0.04 
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Figure 1 Examples of a) continuous, b) ridged and c) mixed salt crust surfaces on 

Sua Pan. Close-ups of each crust pattern are indicated in d-f respectively. 
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Figure 2 Location of Sua Pan in Botswana, upper left insert indicates location within 

Africa. Red box on main map indicates location of study sites. 
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Figure 3 a) IR-camera set-up on a mixed (M1) surface, with calibration tiles 

positioned within the camera field of view. Tape on left side is 1 m. Right 

side are image sections (1000 x 1000 pixels) from the camera: b) true 

colour pre-sunset c) overnight infra-red digital number (DN) image, and d) 

true colour post-sunrise.  Orange and purple boxed areas indicate pixels 

used to determine overnight change on continuous and ridged sections 

respectively (100 x 100 pixels). 
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Figure 4 TLS set-up for Experiments 1 and 2. Solid segments (A, B, C, D) were 

scanned during daytime conditions prior to the start of the nocturnal scan. 

Nocturnal scan covered full 360° (cross-hatched donut) and was used to 

extract 10 x 10 m squares for ridge height and spacing calculations, as well 

as the temporal change for Experiment 1. Nocturnal scan start location, 

segment locations and times are approximate and were aligned to ensure 

representative, similar crust surfaces in A, B, C, D. 1 x 2 m rectangles were 

extracted during post processing to compare relative moisture and 

topography at A, B, C and D. 
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Figure 5 Surface elevations measured by TLS for representative 12 m x 12 m 

squares of each crust type (north at the top of each square). 
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Figure 6 Camera and TLS single time measurements on ridged (R3), continuous 

(C2) and mixed (M2) surfaces, orientated with north at the top of each 

square. Mean and standard deviation values for histograms denoted by た 

and j respectively. Depth averaged (2 cm) gravimetric moisture content 

from theta probes indicated by m. a) True colour images taken with the 

time-lapse camera, half an hour before sunset. b) DNR of infra-red return 

signal and tile value for each site one hour after sunset, for the same area as 

a) (1000 x 1000 pixels). c) Histograms of DNR for each area in b). d) TLS 

return signal intensity corrected for distance, measured on a 1 x 1 m area 

during daylight on the same surface as a) but on a different area, 

approximately 12.2 m from the scanner head. e) Histograms of the TLS 

return signal intensity for each of the patches in d).  



 

This article is protected by copyright. All rights reserved. 

 

 

 

Figure 7 a) Temperature and relative humidity above and below the crust at M1 

during August and September 2012. b) Nocturnal digital number (DN) 

ratios of ridged and continuous crust and calibration tile from infra-red (IR) 

flash camera. 
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Figure 8 a) Nightly change in surface topography at mixed (M1) site between 

11/8/12 and 18/9/12. b) Final surface elevation at M1 on 18/9/12. c) 

Histogram of elevation change per night between measurement periods. 

Mean and standard deviation values for histograms denoted by た and j 

respectively. d) Elevation change vs. final surface elevation. 
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Figure 9 Overnight temperature and relative humidity above and below the crust for 

ridged (R1, R2) and continuous (C1, C2) surfaces during TLS scanning. 

Scan time relates to the times when repeat surface scans were undertaken to 

extract moisture and elevation data corresponding to the DEMs. Exact 

sunset and sunrise times are indicated in Table 1 (approximately 18:00 and 

06:00).  
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Figure 10 Surface elevations for each section of crust used to analyse nocturnal 

trends in moisture and elevation change. Red indicates ridges and blue 

flatter, continuous areas. The time each scan was collected is show above 

each plot. See Table 1 for more details on each set-up. 
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Figure 11 Nocturnal trends in surface moisture for each nocturnal crust section, 

coloured by the TLS ratio of the intensity of the surface during the night 

and day. Sunset and sunrise times are indicated in Table 1. Blue indicates a 

higher relative increase in moisture, red little change in moisture overnight. 

The time each scan was collected is shown above each plot. Corresponding 

climatic conditions and surface elevations are indicated in Figures 9 and 10 

respectively. 
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Figure 12 Nocturnal change in surface elevation from early evening (left) to after 

dawn (right) for R1 and R2. Sunset and sunrise times are indicated in Table 

1. Plots correspond to the same areas shown in Figures 10 and 11, and are 

coloured by change between scanned topography overnight and the 

previous day. Red indicates surface expansion greater than 5 mm. Refer to 

Figure 9 for corresponding temperature and relative humidity. 
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Figure 13 Early morning trajectories of temperature and relative humidity above, on 

and below the crust for each surface measurement at R4 and R5, indicating 

climate trajectory is more extreme under conditions on the 17th September 

2012. 
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Figure 14 Ridged crust topography coloured by the early morning change in surface 

moisture (R4 and R5). Upper row (R4) shows increased relative wetting of 

ridged areas under high relative humidity (maximum 83%) and the surface 

takes longer to dry after dawn. Similar spatial response under moderate 

relative humidity (R5; middle row; maximum 70%), but faster drying after 

dawn. Sunrise was at 6:09 and 6:08 for the 17th and 18th respectively. 

Corresponding climate conditions are shown in Figure 13. 
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Figure 15 Maximum relative humidity (RH) value recorded each night with the 

corresponding temperature (T) for a 39 day infra-red camera time series. 

Points are separated into nights when the ridge DNR was less than the 

continuous DNR and nights when the ridge DNR was greater or equal to 

the continuous ratio (Figure 7). The latter points independently plot within 

the thenardite stability zone on the sodium sulphate phase diagram and the 

former points well inside in the mirabilite stability zone. 


