53 research outputs found
Cardiac Deletion of Smyd2 Is Dispensable for Mouse Heart Development
Chromatin modifying enzymes play a critical role in cardiac differentiation. Previously, it has been shown that the targeted deletion of the histone methyltransferase, Smyd1, the founding member of the SET and MYND domain containing (Smyd) family, interferes with cardiomyocyte maturation and proper formation of the right heart ventricle. The highly related paralogue, Smyd2 is a histone 3 lysine 4- and lysine 36-specific methyltransferase expressed in heart and brain. Here, we report that Smyd2 is differentially expressed during cardiac development with highest expression in the neonatal heart. To elucidate the functional role of Smyd2 in the heart, we generated conditional knockout (cKO) mice harboring a cardiomyocyte-specific deletion of Smyd2 and performed histological, functional and molecular analyses. Unexpectedly, cardiac deletion of Smyd2 was dispensable for proper morphological and functional development of the murine heart and had no effect on global histone 3 lysine 4 or 36 methylation. However, we provide evidence for a potential role of Smyd2 in the transcriptional regulation of genes associated with translation and reveal that Smyd2, similar to Smyd3, interacts with RNA Polymerase II as well as to the RNA helicase, HELZ
Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOX(Rosa26) mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOX(Rosa26) mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.Peer reviewe
Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome
Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function
Recommended from our members
Hyperoxia but not AOX expression mitigates pathological cardiac remodeling in a mouse model of inflammatory cardiomyopathy
Constitutive expression of the chemokine Mcp1 in mouse cardiomyocytes creates a model of inflammatory cardiomyopathy, with death from heart failure at age 7-8 months. A critical pathogenic role has previously been proposed for induced oxidative stress, involving NADPH oxidase activation. To test this idea, we exposed the mice to elevated oxygen levels. Against expectation, this prevented, rather than accelerated, the ultrastructural and functional signs of heart failure. This result suggests that the immune signaling initiated by Mcp1 leads instead to the inhibition of cellular oxygen usage, for which mitochondrial respiration is an obvious target. To address this hypothesis, we combined the Mcp1 model with xenotopic expression of the alternative oxidase (AOX), which provides a sink for electrons blocked from passage to oxygen via respiratory complexes III and IV. Ubiquitous AOX expression provided only a minor delay to cardiac functional deterioration and did not prevent the induction of markers of cardiac and metabolic remodeling considered a hallmark of the model. Moreover, cardiomyocyte-specific AOX expression resulted in exacerbation of Mcp1-induced heart failure, and failed to rescue a second cardiomyopathy model directly involving loss of cIV. Our findings imply that mitochondria! involvement in the pathology of inflammatory cardiomyopathy is multifaceted and complex.Peer reviewe
Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4)
GPR116 (ADGRF5) and ELTD1 (ADGRL4) belong to different subfamilies of the adhesion G-protein-coupled receptor group but are both expressed in endothelial cells. We therefore analyzed their functions in mice lacking these receptors. While loss of GPR116 or ELTD1 alone had no obvious effect on cardiovascular or kidney function, mice lacking both, GPR116 and ELTD1, showed malformations of the aortic arch arteries and the cardiac outflow tract leading to perinatal lethality in about 50% of the mutants. In addition to cardiovascular malformations, surviving mice developed renal thrombotic microangiopathy as well as hemolysis and splenomegaly, and their lifespan was significantly reduced. Loss of GPR116 and ELTD1 specifically in endothelial cells or neural crest-derived cells did not recapitulate any of the phenotypes observed in GPR116-ELTD1 double deficient mice, indicating that loss of GPR116 and ELTD1 expressed by other cells accounts for the observed cardiovascular and renal defects
Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance
Myogenic vasoconstriction is an autoregulatory function of small arteries. Recently, G-protein-coupled receptors have been involved in myogenic vasoconstriction, but the downstream signalling mechanisms and the in-vivo-function of this myogenic autoregulation are poorly understood. Here, we show that small arteries from mice with smooth muscle-specific loss of G(12)/G(13) or the Rho guanine nucleotide exchange factor ARHGEF12 have lost myogenic vasoconstriction. This defect was accompanied by loss of RhoA activation, while vessels showed normal increases in intracellular [Ca2+]. In the absence of myogenic vasoconstriction, perfusion of peripheral organs was increased, systemic vascular resistance was reduced and cardiac output and left ventricular mass were increased. In addition, animals with defective myogenic vasoconstriction showed aggravated hypotension in response to endotoxin. We conclude that G(12)/G(13)- and Rho-mediated signaling plays a key role in myogenic vasoconstriction and that myogenic tone is required to maintain local and systemic vascular resistance under physiological and pathological condition
- …