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Abstract Pulmonary arterial hypertension (PAH) is a

fatal disease for which no cure is yet available. The leading

cause of death in PAH is right ventricular (RV) failure.

Previously, the TNF receptor superfamily member fibro-

blast growth factor-inducible molecule 14 (Fn14) has been

associated with different fibrotic diseases. However, so far

there is no study demonstrating a causal role for endoge-

nous Fn14 signaling in RV or LV heart disease. The pur-

pose of this study was to determine whether global ablation

of Fn14 prevents RV fibrosis and remodeling improving

heart function. Here, we provide evidence for a causative

role of Fn14 in pulmonary artery banding (PAB)-induced

RV fibrosis and dysfunction in mice. Fn14 expression was

increased in the RV after PAB. Mice lacking Fn14

(Fn14-/-) displayed substantially reduced RV fibrosis and

dysfunction following PAB compared to wild-type litter-

mates. Cell culture experiments demonstrated that activation

of Fn14 induces collagen expression via RhoA-dependent

nuclear translocation of myocardin-related transcription

factor-A (MRTF-A)/MAL. Furthermore, activation of Fn14

in vitro caused fibroblast proliferation and myofibroblast

differentiation, which corresponds to suppression of PAB-

induced RV fibrosis in Fn14-/- mice. Moreover, our findings

suggest that Fn14 expression is regulated by endothelin-1

(ET-1) in cardiac fibroblasts. We conclude that Fn14 is an

endogenous key regulator in cardiac fibrosis and suggest this

receptor as potential new target for therapeutic interventions

in heart failure.
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Introduction

Pulmonary arterial hypertension is a fatal disease with a

3-year mortality rate of 20–40 % for which no cure is

available [12, 18, 43]. During disease progression, the RV

undergoes compensatory hypertrophy to maintain physio-

logical blood pressure and flow. As PAH progresses the RV

becomes fibrotic and dilates and ultimately undergoes

functional failure [8, 38]. In recent years, the outlook for

PAH patients has improved due to earlier recognition and

new therapies. However, despite these interventions vas-

cular pulmonary resistance was high and increased over

time leading eventually still to RV failure [8, 41]. Thus, it

is important to elucidate mechanisms driving RV remod-

eling and transition to RV dysfunction to identify new

targets for therapeutic intervention [47].

Previously, the receptor Fn14 and its ligand TWEAK

have been associated with LV remodeling after myocardial

infarction (MI) [6, 33]. Systemic overexpression of

TWEAK induced via Fn14 progressive dilated cardiomy-

opathy and heart failure affecting both the LV and RV [20].

This phenotype was associated with cardiomyocyte elon-

gation and cardiac fibrosis. Fn14 is also expressed in

human cardiomyocytes and circulating TWEAK levels

were correlated with idiopathic dilated cardiomyopathy

[20]. In contrast, TWEAK levels were inversely correlated

with the severity of PAH in patients suggesting that the

TWEAK/Fn14 axis might play no role in the RV failure

[11]. However, correlations of cytokine blood levels to

heart disease can be misleading. For example, TNF over-

expression leads to heart failure and its endogenous

expression is positively correlated with heart failure [23].

However, clinical trials with anti-TNF therapies were dis-

appointing [27]. Moreover, as with PAH, TWEAK blood

plasma levels are decreased in patients and animal models

with chronic kidney disease (CKD). In contrast, Fn14 is

upregulated in the kidney in animal models as well as

patients with CKD [19, 52]. Deletion of Fn14 in the animal

models protects against kidney fibrosis and failure [19].

Thus, it is important to study the endogenous role of Fn14

in heart disease.

TWEAK plays an important role in several biological

processes including inflammation, angiogenesis, cell

growth, cell death and fibrosis. Depending on cell type and

context TWEAK mediates these activities via Fn14 by

activating a variety of downstream signaling cascades. Our

previous data have suggested that TWEAK-induced car-

diomyocyte proliferation is mediated through activation of

ERK and PI3K as well as inhibition of GSK-3beta [35].

Recently, NFjB has been identified as a major downstream

target of the TWEAK/Fn14 axis through functional vali-

dation in numerous cellular and invivo contexts [31]. With

regard to signaling in heart cell types, the TWEAK/Fn14

axis was shown to induce NFjB signaling in cardiomyo-

cytes [6] as well as fibroblasts [5].

Here we examined Fn14 expression in models of pres-

sure overload (3 weeks after PAB in mice [2, 3] or mon-

ocrotaline (MCT) treatment of rats [7, 26]) and found Fn14

markedly upregulated in the RV. Fn14-/- mice exhibited

reduced fibrosis and improved RV function following PAB.

Our data show that Fn14 activation regulates fibroblast

proliferation, differentiation and collagen expression.

Finally, our data suggest a novel TWEAK/Fn14/RhoA/

MAL pathway downstream of ET-1 signaling in cardiac

fibroblasts (CFs). Collectively, our data demonstrate that

Fn14 is an important endogenous mediator of RV remod-

eling and failure.

Methods

An expanded version of methods is available in Supple-

mentary material online.

Animal studies

The investigation conforms with the Guide for the Care and

Use of Laboratory Animals published by the Directive

2010/63/EU of the European Parliament. In vivo proce-

dures were approved by a local Animal Ethics Committee

in accordance to governmental and international guidelines

on animal experimentation. Fn14-/- mice were previously

generated at Biogen (Biogen Idec, Inc, Cambridge) [21].

PAB and/or SHAM operation of mice (20–23 g) was per-

formed under isoflurane anesthesia (1.5 % v/v) and

0.03 mg/kg buprenorphine hydrochloride (s.c.). Analgetic

therapy post operation was achieved by buprenorphine

(0.03 mg/kg, 48 h) and carprofen (s.c., 4 mg/kg, 3–7 days).

Pulmonary hypertension in Sprague–Dawley rats

(300–350 g) was induced with 60 mg/kg MCT (s.c.) [42].

Animals were daily controlled for signs of pain. Functional

analyses were performed by MRI and hemodynamic mea-

surements with a Millar microtip catheter under inhalation of

isoflurane (1.5–2.0 % v/v). For organ/tissue sampling, ani-

mals were anesthetized (120 mg/kg ketamine ? 16 mg/kg

xylazine) and subsequently euthanized through exsanguina-

tion. Blood was intracardially collected and analyzed with a

RayBio_Mouse TWEAK ELISA Kit.

Cell culture experiments

Cardiac fibroblasts were isolated with Liberase TH enzyme

mix (Roche) from Fn14-/- mice and wild-type littermates.

All experiments were performed with primary CFs after

one or two passages. As an immortalized fibroblast cell line
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the Rat2 fibroblast cell line was used; a normal, non-

tumorigenic and highly transfectable cell line derived from

the Fischer rat fibroblast 3T3 like cell line Rat1. HEK293T

cells were utilized for luciferase reporter assays. NIH3T3

cells were used as control cells for MAL nuclear translo-

cation assays. Cells were cultured under standard condi-

tions or as indicated.

Construction of pEGFP-TWEAK

TWEAK cDNA was amplified from HEK293T cells,

ligated into pGEM-T-easy and a HindIII/SalI TWEAK

fragment was subcloned into pEGFP-N1.

Transfection and luciferase promoter assays

Transient transfections were performed with Fugene 6

(Roche) with a total of 50 ng of constructs. Luciferase

activity was measured by LightSwitch Luciferase Assay

Reagent after 24 h of stimulation or 30–48 h after

overexpression.

Western blot

Tissues were lysed and homogenized in RIPA buffer.

Protein extracts were resolved on SDS gels, blotted on

nitrocellulose membranes and incubated with the following

primary antibodies: rabbit anti-TWEAK/Fn14 receptor,

rabbit anti-pan-actin, monoclonal rabbit anti-RhoA

(1:1,000) (all cell signaling), goat anti-DDR2 (Santa Cruz),

rabbit anti-Collagen Type 1 (1:500) (Rockland Immuno-

chemicals), mouse anti-GAPDH (1:2,000) (Sigma) and

polyclonal rabbit anti-MAL (1:200) (from G. Posern). Anti-

gen–antibody complexes were visualized using horseradish

peroxidase-conjugated secondary antibodies. Western blots

were quantified by Image J (NIH) software.

siRNA-mediated knockdown of MAL

Cardiac fibroblasts from wild-type mice were split in serum-

free medium and 24 h later transfected with 40 pM of siRNA

perfectly matching the sequence 50-ATGGAGCTGGTG

GAGAAGAA-30 of both murine MAL and MRTF-B and

40 pM of scrambled siRNA (Qiagen) with lipofectamine

[30]. 24 h later cells were stimulated with 100 ng/ml of

TWEAK.

Determination of activated RhoA

Activated RhoA was determined by immunoprecipitation

with the fusion protein GST-Rho-binding domain of

Rhotekin (GST-RBD) [39].

RNA extraction and Real-Time PCR

RNA was isolated with an RNeasy Fibrous Tissue Kit. RT

reaction was performed using oligo (dT) primer. For Real-

Time PCR analysis, cDNA was amplified with IQTM

SYBR� Green SuperMix (Biorad) and Bio-Rad iCYCLER

iQ5. Real-Time PCR was performed in triplicates and

relative gene expression was calculated on the basis of DCt

values to gapdh.

Immunohistochemistry

Mouse hearts were isolated, dissected in RV and LV ? S,

washed in PBS, fixated overnight in 10 % PFA, embedded

in paraffin and sectioned longitudinally (5 lm). Sections

were deparaffinized in xylene and rehydrated in ethanol.

Heat-mediated antigen retrieval was performed in 0.05 M

EDTA buffer (pH 8.0). Tissues for cryosections (5 lm)

were frozen in OCT, fixated in acetone and stained as

indicated. To quantify fibrosis RV sections were stained

with 0.1 % Sirius Red F3B in picric acid and analyzed

using a QWin V3 computer-assisted image analysis soft-

ware (Leica) [15].

Immunofluorescence

Heart sections were blocked in 5 % goat serum/0.2 %

Tween-20/PBS for 1 h at RT. Cells were fixated in 3.7 %

paraformaldehyde and permeabilized in PBS/0.5 % Triton.

Samples were stained as indicated. F-actin was detected by

rhodamine–phalloidin and cell membranes by WGA

staining (Molecular Probes, Invitrogen). Cell size was

determined using the ImageJ (NIH) software.

Endothelin stimulation

After serum starvation cells were stimulated for 24 h with

100 nM ET-1 (R and D systems).

Collagen assay

Serum-starved Rat2 fibroblasts were stimulated with

TWEAK (100 ng/ml) for 48 h. L-ascorbic acid (0.25 mM)

was added to the medium daily. Cells were lysed in RIPA

buffer and total collagen (Types 1–5) was assessed using a

Sircol soluble collagen assay kit (Biocolor Ltd).

MAL translocation

MAL translocation was determined with the Count soft-

ware (by B. Waclaw). Nuclei number was assessed based

on DAPI staining. MAL translocation was considered

positive if the pixel number in the purple channel
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(MAL/DAPI overlap) was greater or equal compared to the

threshold defined by control experiments.

Proliferation assay

Proliferation was determined with a CountessTM cell

counter (Invitrogen) or CellTiter 96 Aqueous Cell Prolif-

eration Assay (Promega).

Statistical analyses

Data were analyzed with GraphPad Prism. Data are pre-

sented as mean ± standard error of the mean (SEM). Sta-

tistical significance was determined using Student’s t test

or for multiple comparisons One-way ANOVA followed

by Bonferroni’s post hoc test. Values of p \ 0.05 were

considered statistically significant.

Results

Fn14 expression is upregulated in models of RV failure

To assess whether Fn14 signaling is involved in RV failure,

we determined the expression levels of Fn14 in RVs

3 weeks after PAB in mice by Real-Time PCR. LVs were

used as an internal control as they are not affected in this

model. Fn14 mRNA expression was not upregulated in

LVs (Fig. 1a). In contrast, Real-Time PCR analyses uti-

lizing primers spanning the TWEAK-binding (exon 1–2),

transmembrane (exon 2–3, only present in full-length) and

TRAF-binding cytosolic (exon 3–4) motifs of Fn14 dem-

onstrated upregulated expression of full-length Fn14

(NM_013749.2) in RVs of mice after PAB (Fig. 1a). A

correlation between RV dysfunction and Fn14 expression

was confirmed at protein level after PAB (Fig. 1b, c). In

contrast to TWEAK, Fn14 was strongly expressed

throughout the diseased RV (Fig. 1d and Supplemental

Fig. 1a). Co-staining experiments indicated that Fn14

expression is upregulated in cardiomyocytes and fibroblasts

(Fig. 1e, f). This was further supported by Western blot

analyses of RV mouse CFs after PAB (Fig. 1g). Taken

together our data suggest a positive correlation between

upregulation of Fn14 in the heart and RV failure.

Previously, it has been determined that TWEAK levels

are inversely correlated with the severity of PAH in

patients. This observation led to the conclusion that the

TWEAK/Fn14 axis may have no role in RV disease [11].

In contrast to the observation in humans, TWEAK levels

were unchanged in PAB-operated animals (Supplemental

Fig. 1b). To further investigate this controversy we utilized

a second RV disease model MCT treatment in rats. Neither

Fn14 nor TWEAK mRNA expression was upregulated in

LVs. In contrast, Fn14 and TWEAK mRNA expression

were markedly upregulated in RVs after MCT treatment

(Supplemental Fig. 1c, d). In contrast, TWEAK blood

plasma levels were significantly reduced (Supplemental

Fig. 1e). Thus, TWEAK blood plasma levels do not nec-

essarily correlate with the expression levels of TWEAK

and/or Fn14 in the heart.

Fn14-/- mice are resistant to PAB-induced RV

dysfunction

To evaluate a causative role of Fn14 upregulation and RV

failure, we challenged wild-type Fn14?/? and knockout

Fn14-/- mice with PAB and analyzed RV function. Under

physiological conditions, no significant differences were

observed. A consistent increase in systolic RV pressure in

Fn14?/? as well as Fn14-/- PAB-operated mice confirmed

proper banding (Fig. 2e). After PAB, Fn14?/? mice

exhibited dramatic increases in RV end-systolic volume

(ESV) and end-diastolic volume (EDV), indicating dilation

and a decrease in RV ejection fraction (EF). In contrast,

Fn14-/- mice were resistant to RV dilation showing a

significantly better RV EF after PAB (Fig. 2 and Supple-

mental Table S1). In conclusion, these results indicate that

Fn14 is a potent endogenous mediator of RV dysfunction

and that deletion of Fn14 protects mice from PAB-induced

RV dysfunction.

Fn14 signaling regulates fibrosis

Three weeks post-PAB, the fibrotic area was reduced by

39 % fibrosis in RVs of Fn14-/- mice compared to Fn14?/?

littermates (Fig. 3a, b). Moreover, PAB-induced upregula-

tion of fibrosis-associated collagen genes like Col1a1 and

Col1a2 was diminished (Fig. 3c–e). Expression levels of

collagens were not affected in the LV (data not shown).

These data suggest that Fn14 is an endogenous mediator of

fibrosis in RV heart disease.

Fn14 signaling regulates collagen expression

via the RhoA-Mal axis

To further understand Fn14 signaling with regards to

fibrosis, we utilized cell lines and primary CFs expressing

Fn14 endogenously (Fig. 4 and Supplemental Fig. 2a).

HEK293T cells were utilized as standard cell type for

luciferase promoter assays. TWEAK treatment of

HEK293T cells markedly enhanced Col1a1 and Col1a2

promoter activity (Fig. 4a, b). To determine collagen syn-

thesis, we utilized the Rat2 fibroblast cell line, as

HEK293T are suboptimal for such studies [34]. TWEAK

treatment of Rat2 fibroblasts resulted in the accumulation

of collagens, which was abolished by co-treatment with
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ITEM2, an Fn14 blocking antibody (Fig. 4c and Supple-

mental Fig. 2b, c). Importantly, TWEAK treatment also

enhanced collagen expression by primary CFs of Fn14?/?

mice, but had no effect on CFs of Fn14-/- mice (Fig. 4d).

Collectively, we conclude that Fn14 regulates collagen

expression in fibroblasts.

It has been demonstrated that the transcription factor

MAL plays a regulatory role in collagen expression. Fur-

thermore, it has been shown that the Col1a2 promoter is a

direct target of MAL [44] and that serum stimulation of

NIH3T3 cells induces MAL nuclear translocation [32]. To

determine if the TWEAK/Fn14 axis promotes MAL

nuclear translocation NIH3T3 cells and primary Fn14?/?

CFs were stimulated with TWEAK. As a positive control

we used 15 % serum. Stimulation of Fn14?/? CFs with

TWEAK resulted in nuclear translocation of MAL (Fig. 4e

and Supplemental Fig. 3a, b), which was inhibited in

Fn14-/- CFs (Fig. 4e). In addition, MAL overexpression

enhanced TWEAK-induced Col1a2 promoter activity in

HEK293T cells (Fig. 4f). Finally, siRNA-mediated knock-

down of MAL abolished TWEAK-induced collagen

expression (Supplemental Fig. 2d, e). These results suggest

that Fn14 activation promotes collagen expression via

induction of MAL nuclear translocation.

MAL is regulated through the Rho GTPase-actin pathway

[32]. Activation of RhoA determined by a Rhotekin pull

down assay was first established in HEK293 cells (Supple-

mental Fig. 3c). TWEAK stimulation of primary Fn14?/?

CFs but not of Fn14-/- CFs led to strong RhoA activation

(Fig. 4g). Moreover, MAL translocation to the nucleus could

be suppressed by inhibitors to ROCK kinase (Y27632) or the

Rho/SRF pathway (CCG-1432) in NIH3T3 cells (Fig. 4h).

These results indicate that TWEAK can promote MAL

translocation via RhoA activation.
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Fig. 1 Fn14 expression in RV heart disease. a Real-Time PCR

analyses of Fn14 mRNA expression from RV demonstrated elevated

expression following PAB. No significant changes were observed in

LVs (*p \ 0.05, n = 4). Loading control: gapdh. b Western blot

analysis of RV extracts of WT, SHAM- and PAB-operated mice

showing a prevalent expression of Fn14 after PAB in RV. No

significant difference was observed for TWEAK. Loading control:

Pan-actin. c Quantitative analysis of b. Fn14 levels (normalized to

pan-actin) of four individual hearts per condition were expressed as

arbitrary units ± SEM. d Immunohistochemistry: Fn14 protein

expression is elevated after PAB in RV of Fn14?/? animals. Nuclei

were counterstained with methyl green. Sections from Fn14-/- mice

served as control for the specificity of the used anti-Fn14 antibody.

e and f Co-staining experiments with fibroblast-markers (e, DDR2; f,
P4HB: prolyl 4-hydroxylase, beta polypeptide) indicating that Fn14

expression is upregulated in fibroblasts after PAB in RV of Fn14?/?

animals. Arrows: Fn14-positive fibroblasts. Stars: cardiomyocytes.

g Western blot analysis: Fn14 is upregulated in isolated Fn14?/? CFs

from RVs after PAB. Scale bars: 65 lm. RV right ventricle, LV left

ventricle, PAB pulmonary artery banding
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ET-1 regulates Fn14

ET-1 is an important player in the pathogenesis of PAH.

Upregulation of ET-1 in patients is associated to PAH [46] and

cardiac fibrosis [36]. Its blood level is upregulated after PAB

in mice [13, 37] and in PAH patients [14]. Thus, we suspected

that ET-1 might be responsible for the upregulation of Fn14

upon PAB. As hypothesized, PAB resulted in the upregulation

of ET-1 in wildtype Fn14?/? mice (Fig. 4i). Importantly,

exposure of primary CFs to ET-1 resulted in marked upreg-

ulation of Fn14 expression (Fig. 4j). Finally, ET-1 stimulation

significantly enhanced TWEAK-induced nuclear MAL

translocation in Fn14?/? CFs, but not Fn14-/- CFs (Fig. 4k).

In conclusion, our data suggest that ET-1 enhances signaling

through the Fn14-RhoA-MAL axis inducing collagen

expression and thereby promoting RV fibrosis.

Fn14 signaling promotes myofibroblast differentiation

Another characteristic upon tissue injury besides collagen

expression is the differentiation of interstitial fibroblasts into

myofibroblasts, which are characterized by the expression of

smooth muscle cell (SMC) markers. As the SRF co-activator

MAL is also critical for the induction of the myofibroblast-

associated genes a-smooth muscle actin (SMA) and

a-smooth muscle protein 22 (SM22), we analyzed Fn14-/-

mice for defects on myofibroblast differentiation [44].

Expression of SMA and SM22 was attenuated in RVs of

Fn14-/- animals after PAB (Fig. 5a, b). However, as SMA is

expressed in spindle-shaped myofibroblasts as well as

smooth muscle cells in blood vessels, we performed immu-

nofluorescence stainings. We detected in Fn14-/- RVs sig-

nificantly lower numbers of spindle-shaped SMA-positive

myofibroblasts, which were not associated with any vessel

(Fig. 5c). Importantly, TWEAK stimulation induced the

accumulation of organized stress fibers, a hallmark of

myofibroblasts, in Rat2 fibroblasts (Supplemental Fig. 3d)

as well as in Fn14?/? CFs, but not Fn14-/- CFs (Fig. 5d).

These data identify Fn14 as a potential mediator of myofi-

broblast differentiation.

Fn14 regulates fibroblast proliferation

Enhanced fibroblast proliferation can also contribute to

alteration of connective tissue homeostasis and fibrosis

under pathophysiological conditions [44]. Quantification of

staining of the proliferation marker proliferating cell

nuclear antigen (PCNA) did not indicate a change in
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Fig. 2 Fn14-/- mice show improved heart function after PAB. MRI

imaging. a RV ejection fraction (EF) before PAB was not

significantly different between wild-type and knockout mice (SHAM:

Fn14?/?: n = 4; Fn14-/-: n = 6; PAB-operated mice: n = 11 both

for Fn14?/? and Fn14-/-). b RV EF was markedly decreased

3 weeks after PAB in Fn14?/? mice (n = 11, ***p \ 0.0001).

Reduction of RV EF was significantly inhibited in Fn14-/- mice

(n C 4 for SHAM-operated mice; n = 11 for PAB-operated mice,

*p \ 0.05). c End-diastolic (ESV) and EDVs (*p \ 0.05, n = 11 for

PAB-operated mice). d Representative MRI images of hearts from

SHAM- and PAB-operated mice. ED end-diastole, ES end-systole.

e Peak of RV systolic pressure. RV right ventricle, PAB pulmonary

artery banding. LVs are indicated by arrows, RVs by arrowheads
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cardiomyocyte proliferation after PAB (data not shown).

There was, however, a trend towards decreased prolifera-

tion of interstitial cells corroborating with a diminished

interstitial cell density in Fn14-/- hearts (Fig. 6a, b).

Quantification showed that the total number of interstitial

cells was significantly higher in RVs from Fn14?/? animals

compared to Fn14-/- littermates (Fig. 6c). Immunofluo-

rescence analyses with the fibroblast-specific marker dis-

coidin domain receptor 2 (DDR2) revealed that the major

cell type in the interstitial cell clusters is fibroblasts

(Fig. 6d). These data suggest that fibroblast proliferation

was decreased in the absence of Fn14.

To directly address whether TWEAK/Fn14 signaling is

sufficient to induce fibroblast proliferation, Rat2 cells and

CFs ([90 % fibroblasts, Supplemental Fig. 4a) were

stimulated with TWEAK in serum-free medium. TWEAK

stimulation induced Rat2 fibroblast proliferation in a con-

centration-dependent manner. Fn14 overexpression by

itself resulted in proliferation in serum low conditions

(Supplemental Fig. 4b–d). Importantly, in vitro TWEAK

stimulation of CFs enhanced proliferation of Fn14?/? but

not of Fn14-/- CFs (Fig. 6e) supporting the notion that the

TWEAK/Fn14 axis regulates fibroblast proliferation.

Taken together, these results indicate that the protective

effect of Fn14 deletion could be explained in part by the

impact of Fn14 activation on fibroblast proliferation, dif-

ferentiation and collagen expression (Fig. 6f).

Discussion

The development of RV failure involves complex patho-

logical mechanisms whereas identification of underlying

causes and successful medical treatment remain a major

challenge. Here, we show that Fn14 deletion reduces

markedly PAB-induced right heart fibrosis and dysfunc-

tion. Our data provide strong evidence that inhibition of

endogenous TWEAK/Fn14 pathway may potentially be

clinically beneficial in treating right heart disease due to

pressure overload. This is important as right heart disease is

poorly characterized with limited treatment options. Fur-

thermore, our study suggests that Fn14 is linked at the
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mechanistic level with the MAL-collagen pathway and

provides evidence that Fn14 itself is regulated by ET-1.

It has previously been shown that inhibition of Fn14

signaling reduces fibrotic processes in several organs in

disease models [19, 51, 53, 54]. In the heart, this pathway

has been associated with LV remodeling. Systemic over-

expression of TWEAK induced heart failure affecting LV

and RV [20]. However, it remained unclear whether

endogenous TWEAK/Fn14 signaling plays an active role in

cardiac remodeling. Decreased TWEAK blood levels in

patients with PAH argue against a role in the RV [11].

However, reduced TWEAK blood levels might be due to

sequestration of circulating TWEAK by the upregulated

Fn14 receptor or might be a compensatory mechanism to

protect from the consequences of Fn14 activation. This is

supported by our findings that TWEAK blood plasma

levels were reduced in MCT-treated rats while Fn14 was

upregulated in the heart. In fact, opposite to most other

signaling principles, in vivo TWEAK/FN14 pathway acti-

vation is regulated by changing the concentration of the

receptor, not of the ligand, [1]. Moreover, high Fn14 levels

are reported to activate downstream signaling with few or

none TWEAK present [50]. Finally, correlations of cyto-

kine blood levels to heart disease can be misleading as

exemplified by TNF [27]. Interestingly, TWEAK blood

plasma levels are also decreased in patients and animal

models with CKD whereas Fn14 was upregulated in the

kidney. Importantly, deletion of Fn14 in the animal models

protects against kidney fibrosis and failure [19, 52].

Fibrosis is characterized by fibroblast accumulation and

excess deposition of extracellular matrix proteins, which

leads to tissue remodeling and dysfunction. The traditional

view is that the underlying mechanism is induction of

resident fibroblast proliferation [24]. Our data suggest that

reduced RV fibrosis upon PAB in Fn14-/- mice is partially

due to inhibition of this process. This is in accordance with

reports that TWEAK has pro-mitogenic effects on cardiac

cells including fibroblasts [5, 28, 35]. Thus, reduced

numbers of myofibroblasts and fibrosis might be due to

reduced fibroblast proliferation. However, as the activation

of TWEAK/Fn14 signaling was sufficient to induce myo-

fibroblast differentiation and collagen expression in vitro, it

appears likely that induced Fn14 re-expression also pro-

motes myofibroblast differentiation driving RV fibrosis.

The traditional view of fibrosis has been challenged

during the last years as it became clear that the fibroblast

population exhibits a large phenotypic heterogeneity [24].

It is now clear that fibroblasts can be derived from endo-

thelial cells, pericytes, bone marrow-derived progenitor

cells, monocytes, and fibrocytes. Thus, it is possible that

inhibition of TWEAK/Fn14 signaling is not only regulating

fibroblasts proliferation and collagen expression but also

fibroblast precursor recruitment. Whether this plays in

PAB-induced fibrosis a major role is unknown. However, it

is well known that the TWEAK/Fn14 axis affects the

immune response upon tissue injury [4] and it has been

hypothesized that it induces the recruiting of proinflam-

matory mediators during the acute phase of MI while at

later time points, it participates in extracellular matrix

remodeling and fibrosis. Therefore, it will be interesting to

determine in future experiments whether TWEAK/Fn14

controls fibroblast precursor recruitment in the PAB model.

Although our in vitro data indicate that TWEAK can

modulate directly fibroblast proliferation, differentiation and

collagen synthesis, we cannot conclude from our data whe-

ther the observed protection is due to a direct myocardial
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effect or due to an unknown systemic, e.g. immune-mediated

effect as we have utilized a general knockout model. Future

studies utilizing conditional knockout mice will elucidate the

underlying cellular mechanism.

SM22 and SMA both contain CArG boxes in their

transcription control region, which are known targets of

actin-MAL/MRTF-SRF signaling [9, 44, 49]. MAL directly

regulates Col1a2 gene expression [44]. It is a downstream

target of Rho GTPase-actin signaling, which targets ROCK

and MLC kinases [32]. Nuclear MAL translocation links

reorganization of the actin cytoskeleton to SRF-dependent

gene transcription and myofibroblast differentiation [16, 25,

44]. Finally, ROCK inhibition can reduce cardiac fibrosis

[16, 17, 40]. In accordance with these data, TWEAK stim-

ulation led to rapid activation of RhoA kinase in CFs.

Blockage of the Rho/SRF or ROCK activity abolished
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nuclear MAL translocation and reduced collagen expression.

Our data suggest that TWEAK activates via Fn14 the RhoA-

ROCK-dependent nuclear translocation of MAL to trigger

SRF-dependent transcription. As Chen and co-workers have

recently demonstrated that TWEAK/Fn14 signaling pro-

motes proliferation and collagen synthesis of rat CFs via the

NF-rB pathway it will be interesting to determine in the

future how these pathways interact [5, 48, 55].

Fn14 expression itself can be induced in CFs by ET-1,

one of the key regulators implicated in the pathogenesis of

PAH [45]. Importantly, ET-1 also facilitated TWEAK/

Fn14 signaling towards MAL translocation. Reduced ET-1

levels in Fn14-/- mice are probably due to reduced fibrosis

[10, 29].

RV failure is the leading cause of death in PAH [8, 38].

However, available therapies all target pulmonary vaso-

constriction, but not the remodeling of the right heart [12].

Fn14 combines several features that make it a good ther-

apeutic target: Fn14-/- mice are viable and show no

obvious phenotype under physiological conditions. Fn14 is

specifically upregulated in the RV after PAB, and its

genetic ablation protected from right heart disease. Thus,

global inhibition during therapy appears not prone to cause

side effects. However, it is possible that Fn14-/- mice

activate compensatory pathways. In that case, therapeutic

inhibition might have negative effects. For example, it has

recently been suggested, in contrast to previous reports,

that the human heart is a highly dynamic organ with the

ability to regenerate cardiomyocytes [22]. Thus, as

TWEAK has recently been shown to be a positive regulator

of cardiomyocytes proliferation [35], a therapy targeting

TWEAK/Fn14 signaling might interfere with cardiac

homeostasis and cause over adverse effect.

Anti-TWEAK blocking antibodies and Fn14-Fc decoy

receptor are available and have successfully been tested in

other disease models. Given our findings, blocking the

TWEAK/Fn14 axis may be a useful therapy for protecting

patients from right heart disease and therefore, warrants

further preclinical investigation.
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