72 research outputs found

    Российская интеллигенция: блеск и нищета духа

    Get PDF
    Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an N-terminal segment, b1, containing functionally important phosphorylation sites, the basic region b2, required for binding to DNA, and the HLH domain. We show that a proline residue in the sequence divides the protein in two parts, a flexible and disordered N-terminal region including b1 and a structured, mainly helical region comprising b2 and the HLH domain. Binding of H1H to a double strand DNA oligonucleotide was monitored through the chemical shift perturbation of backbone amide resonances, and showed that the interaction surface involves not only the b2 segment but also several residues in the b1 and HLH regions

    Щодо утворення сімейств атомарних радіальних базисних функцій

    Get PDF
    Наведено схему побудови сімейств атомарних радіальних базисних функцій, які є нескінченно диференційовними фінітними розв'язками функціонально-диференціальних рівнянь, породжених операторами Лапласа та Гельмгольца.The scheme of building a family of atomic radial basis functions which are infinitely differentiable finite solutions of the functional-differential equations containing the Laplace and Helmholtz operators is introduced

    Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation

    Get PDF
    The authors gratefully acknowledge financial support of NWO, the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. The NWO Large grant 175.107.301.10 is also gratefully acknowledged.Kraft lignin, the main by-product of the pulping industry, is an abundant, yet highly underutilized renewable aromatic polymer. During kraft pulping, the lignin undergoes extensive structural modification, with many labile native bonds being replaced by new, more recalcitrant ones. Currently little is known about the nature of those bonds and linkages in kraft lignin, information that is essential for its efficient valorization to renewable fuels, materials or chemicals. Here, we provide detailed new insights into the structure of softwood kraft lignin, identifying and quantifying the major native as well as kraft pulping-derived units as a function of molecular weight. De novo synthetic kraft lignins, generated from (isotope labelled) dimeric and advanced polymeric models, provided key mechanistic understanding of kraft lignin formation, revealing different process dependent reaction pathways to be operating. The discovery of a novel kraft-derived lactone condensation product proved diagnostic for the identification of a previously unknown homovanillin based condensation pathway. The lactone marker is found in various different soft- and hardwood kraft lignins, suggesting the general pertinence of this new condensation mechanism for kraft pulping. These novel structural and mechanistic insights will aid the development of future biomass and lignin valorization technologies.Publisher PDFPeer reviewe

    Увічнення пам’яті героїв Східної (Кримської) війни (1853 – 1856 рр.) у кінофотодокументах

    Get PDF
    Дана стаття розглядає увічнення пам’яті героїв Східної (Кримської) війни 1853–1856 рр. та святкування її 100-річчя в кінофотодокументах.This article is dedicated to perpetuation of the memory of the Eastern (Crimean) War heroes. It also shows the celebration of 100-year anniversary by means of the cine- and photo documents

    Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking.

    Get PDF
    Bromodomains are epigenetic reader domains, which have come under increasing scrutiny both from academic and pharmaceutical research groups. Effective targeting of the BAZ2B bromodomain by small molecule inhibitors has been recently reported, but no structural information is yet available on the interaction with its natural binding partner, acetylated histone H3K14ac. We have assigned the BAZ2B bromodomain and studied its interaction with H3K14ac acetylated peptides by NMR spectroscopy using both chemical shift perturbation (CSP) data and clean chemical exchange (CLEANEX-PM) NMR experiments. The latter was used to characterize water molecules known to play an important role in mediating interactions. Besides the anticipated Kac binding site, we consistently found the bromodomain BC loop as hotspots for the interaction. This information was used to create a data-driven model for the complex using HADDOCK. Our findings provide both structure and dynamics characterization that will be useful in the quest for potent and selective inhibitors to probe the function of the BAZ2B bromodomain.This is the final published version of the article. It has been published by the American Chemical Society in Biochemistry. The article can be accessed on their website here: http://pubs.acs.org/doi/abs/10.1021/bi500909d. It is freely available under a CC BY licence

    Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen

    Get PDF
    Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists. Bexkens et al. show that N. gruberi amoebae live preferably on lipids, for which they need oxygen, a lifestyle largely unknown among protists. This challenges existing views about its energy metabolism, with implications for treatment of its pathogenic relative, N. fowleri, the brain-eating agent of primary amoebic me

    Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF

    Get PDF
    Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLF AD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLF AD-histone octamer complex shows that APLF AD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLF AD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted

    Block Copolymer Micelles with an Intermediate Star-/Flower-Like Structure Studied by H-1 NMR Relaxometry

    No full text
    H-1 NMR relaxation is used to study the self-assembly of a double thermoresponsive diblock copolymer in dilute aqueous solution. Above the first transition temperature, at which aggregation into micellar structures is observed, the trimethylsilyl (TMS)-labeled end group attached to the shell-forming block shows a biphasic T-2 relaxation. The slow contribution reflects the TMS groups located at the periphery of the hydrophilic shell, in agreement with a star-like micelle. The fast T-2 contribution corresponds to the TMS groups, which fold back toward the hydrophobic core, reflecting a flower-like micelle. These results confirm the formation of block copolymer micelles of an intermediate nature (i.e., of partial flower-like and star-like character), in which a part of the TMS end groups folds back to the core due to hydrophobic interactions. imag

    A membrane permeable prodrug of S223 for selective Epac2 activation in living cells

    No full text
    Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector proteins in various processes in different types of cells are still not well defined, but investigations have been facilitated by the development of cyclic nucleotide analogues with distinct selectivity profiles towards a single effector protein. A remaining challenge in the development of such analogues is the poor membrane permeability of nucleotides, which limits their applicability in intact living cells. Here, we report the synthesis and characterisation of S223-AM, a cAMP analogue designed as an acetoxymethyl ester prodrug to overcome limitations of permeability. Using total internal reflection imaging with various fluorescent reporters, we show that S223-AM selectively activates Epac2, but not Epac1 or protein kinase A, in intact insulin-secreting β-cells, and that this effect was associated with pronounced activation of the small G-protein Rap. A comparison of the effects of different cAMP analogues in pancreatic islet cells deficient in Epac1 and Epac2 demonstrates that cAMP-dependent Rap activity at the β-cell plasma membrane is exclusively dependent on Epac2. With its excellent selectivity and permeability properties, S223-AM should get broad utility in investigations of cAMP effector involvement in many different types of cells

    DNA repair factor APLF acts as a H2A-H2B histone chaperone through binding its DNA interaction surface

    No full text
    Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex
    corecore