131 research outputs found

    Intensive language training enhances brain plasticity in chronic aphasia

    Get PDF
    BACKGROUND: Focal clusters of slow wave activity in the delta frequency range (1–4 Hz), as measured by magnetencephalography (MEG), are usually located in the vicinity of structural damage in the brain. Such oscillations are usually considered pathological and indicative of areas incapable of normal functioning owing to deafferentation from relevant input sources. In the present study we investigated the change in Delta Dipole Density in 28 patients with chronic aphasia (>12 months post onset) following cerebrovascular stroke of the left hemisphere before and after intensive speech and language therapy (3 hours/day over 2 weeks). RESULTS: Neuropsychologically assessed language functions improved significantly after training. Perilesional delta activity decreased after therapy in 16 of the 28 patients, while an increase was evident in 12 patients. The magnitude of change of delta activity in these areas correlated with the amount of change in language functions as measured by standardized language tests. CONCLUSIONS: These results emphasize the significance of perilesional areas in the rehabilitation of aphasia even years after the stroke, and might reflect reorganisation of the language network that provides the basis for improved language functions after intensive training

    Learning Factories and their Enhancements - A Comprehensive Training Concept to Increase Resource Efficiency

    Get PDF
    AbstractLearning factories have been developed to impart substantial knowledge about improvement processes and methods to students and especially industrial participants within a real-world manufacturing environment. Due to the rising significance of resource efficiency, this issue has become another main driver for learning factories. Therefore, a comprehensive training concept is necessary in order to build up a measurement system in order to determine key figures and derive optimization steps. A new material flow simulation approach, developed in the research project REBAS, is added to the training courses in order to extend optimizing possibilities

    Complexity Analysis of Spontaneous Brain Activity in Attention-Deficit/Hyperactivity Disorder: Diagnostic Implications

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is defined as the most common neurobehavioral disorder of childhood, but an objective diagnostic test is not available yet to date. Neurophychological, neuroimaging, and neurophysiological research offer ample evidence of brain and behavioral dysfunctions in ADHD, but these findings have not been useful as a diagnostic test. Methods: Whole-head magnetoencephalographic recordings were obtained from 14 diagnosed ADHD patients and 14 healthy children during resting conditions. Lempel-Ziv complexity (LZC) values were obtained for each channel and child and averaged in five sensor groups: anterior, central, left lateral, right lateral, and posterior. Results: Lempel-Ziv complexity scores were significantly higher in control subjects, with the maximum value in anterior region. Combining age and anterior complexity values allowed the correct classification of ADHD patients and control subjects with a 93% sensitivity and 79% specificity. Control subjects showed an age-related monotonic increase of LZC scores in all sensor groups, while children with ADHD exhibited a nonsignificant tendency toward decreased LZC scores. The age-related divergence resulted in a 100% specificity in children older than 9 years. Conclusions: Results support the role of a frontal hypoactivity in the diagnosis of ADHD. Moreover, the age-related divergence of complexity scores between ADHD patients and control subjects might reflect distinctive developmental trajectories. This interpretation of our results is in agreement with recent investigations reporting a delay of cortical maturation in the prefrontal corte

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    Altered oscillatory brain dynamics after repeated traumatic stress

    Get PDF
    Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala

    Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Get PDF
    BACKGROUND: Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. METHODS: The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes) and base-level (e.g. tulip, rose, orchid, sunflower) categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. RESULTS: Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. CONCLUSION: Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms

    Tinnitus Perception and Distress Is Related to Abnormal Spontaneous Brain Activity as Measured by Magnetoencephalography

    Get PDF
    BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17) is characterised by a marked reduction in alpha (8–12 Hz) power together with an enhancement in delta (1.5–4 Hz) as compared to a normal hearing control group (n = 16). This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus

    Lempel-Ziv complexity in schizophrenia: A MEG study

    Get PDF
    Objective The neurodevelopmental–neurodegenerative debate is a basic issue in the field of the neuropathological basis of schizophrenia (SCH). Neurophysiological techniques have been scarcely involved in such debate, but nonlinear analysis methods may contribute to it. Methods Fifteen patients (age range 23–42 years) matching DSM IV-TR criteria for SCH, and 15 sex- and age-matched control subjects (age range 23–42 years) underwent a resting-state magnetoencephalographic evaluation and Lempel–Ziv complexity (LZC) scores were calculated. Results Regression analyses indicated that LZC values were strongly dependent on age. Complexity scores increased as a function of age in controls, while SCH patients exhibited a progressive reduction of LZC values. A logistic model including LZC scores, age and the interaction of both variables allowed the classification of patients and controls with high sensitivity and specificity. Conclusions Results demonstrated that SCH patients failed to follow the “normal” process of complexity increase as a function of age. In addition, SCH patients exhibited a significant reduction of complexity scores as a function of age, thus paralleling the pattern observed in neurodegenerative diseases. Significance Our results support the notion of a progressive defect in SCH, which does not contradict the existence of a basic neurodevelopmental alteration. Highlights ► Schizophrenic patients show higher complexity values as compared to controls. ► Schizophrenic patients showed a tendency to reduced complexity values as a function of age while controls showed the opposite tendency. ► The tendency observed in schizophrenic patients parallels the tendency observed in Alzheimer disease patients
    corecore