423 research outputs found

    Unraveling the rapid radiation of crested newts, Triturus cristatus superspecies, using complete mitogenomic sequences

    Get PDF
    Background - The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The phylogenetic relationships of the morphotypes have not yet been settled, despite several previous attempts, employing a variety of molecular markers. We here resolve the crested newt phylogeny by using complete mitochondrial genome sequences. Results - Bayesian inference based on the mitogenomic data yields a fully bifurcating, significantly supported tree, though Maximum Likelihood inference yields low support values. The internal branches connecting the morphotypes are short relative to the terminal branches. Seen from the root of Triturus (NRBV = 13), a basal dichotomy separates the T. karelinii group (NRBV = 13) from the remaining crested newts. The next split divides the latter assortment into T. carnifex - T. macedonicus (NRBV = 14) versus T. cristatus (NRBV = 15) and T. dobrogicus (NRBV = 16 or 17). Conclusions - We argue that the Bayesian full mitochondrial DNA phylogeny is superior to previous attempts aiming to recover the crested newt species tree. Furthermore, our new phylogeny involves a maximally parsimonious interpretation of NRBV evolution. Calibrating the phylogeny allows us to evaluate potential drivers for crested newt cladogenesis. The split between the T. karelinii group and the three other morphotypes, at ca. 10.4 Ma, is associated with the separation of the Balkan and Anatolian landmasses (12-9 Ma). No currently known vicariant events can be ascribed to the other two splits, first at ca. 9.3 Ma, separating T. carnifex - T. macedonicus, and second at ca. 8.8 Ma, splitting T. cristatus and T. dobrogicus. The crested newt morphotypes differ in the duration of their annual aquatic period. We speculate on the role that this ecological differentiation could have played during speciatio

    Exploring the Effect of Asymmetric Mitochondrial DNA Introgression on Estimating Niche Divergence in Morphologically Cryptic Species

    Get PDF
    If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation

    Description of a new species of crested newt, previously subsumed in Triturus ivanbureschi (Amphibia: Caudata: Salamandridae)

    Get PDF
    Multilocus molecular data play a pivotal role in diagnosing cryptic species (i.e. genetically distinct but morphologically similar species). A multilocus phylogeographic survey has provided compelling evidence that Triturus ivanbureschi sensu lato comprises two distinct gene pools with restricted gene flow. We conclude that this taxon had better be treated as two distinct (albeit morphologically cryptic) species. The name T. ivanbureschi should be restricted to the western species, which is distributed in western Asiatic Turkey plus the south-eastern Balkan Peninsula. No name is as yet available for the eastern species, which is distributed in northern Asiatic Turkey. We propose the name T. anatolicus sp. nov. for the eastern species and provide a formal species description

    A Bird Survey of Gunung Lumut Protection Forest, East Kalimantan and a Recommendation for its Designation as an Important Bird Area - Part 1

    Get PDF
    We report on a bird survey in and near Gunung Lumut Protection Forest in East Kalimantan, and evaluate our results against the BirdLife International criteria for recognition as an Important Bird Area. Five globally threatened species (Storm 's Stork Ciconia stormi, Bomean Peacock-pheasant Polyplectron schleiermacheri, Large Green Pigeon Treron capellei, Short-toed Coucal Centropus rectunguis and Blue-headed Pitta Pitta baudii) were encountered, as well as 91 species endemic to the Sundaic Lowland Forest biome, and up to 1% of the biogeographic population of the congregatory Storm's Stork. Based on these observations, we recommend Gunung Lumut Protection Forest to be included in Birdlife International 's Important Bird Area network

    The distribution and taxonomy of Lissotriton newts in Turkey (Amphibia, Salamandridae)

    Get PDF
    Two and perhaps three taxa of Lissotriton newt occur in Turkey. Their species status is controversial. The distribution of these taxa and the taxonomic status of each are reviewed and discussed. A database of 128 Turkish Lissotriton localities was compiled and species distribution models were constructed. We reiterate that the presence of L. ( v. ) lantzi in Turkey is disputed and needs confirmation. The range of L. ( v. ) koss - wigi is restricted to north-western Anatolia – given the small global range of this Turkey endemic, a closer look at its conservation status is warranted. The distribution of L. v. schmidtleri covers western Asiatic and European Turkey. The findings support an allopatric distribution of the Turkish Lissotriton species. We reflect on the biological significance of previously reported morphological intermediates between L. ( v. ) kosswigi and L. v. schmidtleri in the light of the recent proposal to recognize kosswigi at the species level. The available data are in line with species status for L. ( v. ) lantzi and L. ( v. ) kosswigi . Although L. v. schmidtleri is a genetically diverged taxon as well, the extent of gene flow with parapatric European Lis - sotriton taxa is as yet unknown

    Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus.

    Get PDF
    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration

    A genomic footprint of hybrid zone movement in crested newts

    Get PDF
    Speciation typically involves a stage in which species can still exchange genetic material. Interspecific gene flow is facilitated by the hybrid zones that such species establish upon secondary contact. If one member of a hybridizing species pair displaces the other, their hybrid zone would move across the landscape. Although theory predicts that moving hybrid zones quickly stagnate, hybrid zones tracked over one or a few decades do not always follow such a limitation. This suggests that hybrid zones have the potential to traverse considerable distances over extended periods of time. When hybrid zones move, introgression is predicted to result in biased gene flow of selectively neutral alleles, from the receding species into the advancing species. We test for such a genomic footprint of hybrid zone movement in a pair of crested newt species (genus Triturus) for which we have a priori support for westward hybrid zone movement. We perform a multilocus phylogeographical survey and conduct Bayesian clustering analysis, estimation of ancestry and heterozygosity, and geographical cline analysis. In a 600 km wide area east of the present day hybrid zone a genomic footprint constitutes empirical evidence consistent with westward hybrid zone movement. The crested newt case suggests that hybrid zone movement can occur over an extensive span of time and space. Inferring hybrid zone movement provides fundamental insight into historical biogeography and the speciation process, and we anticipate that hybrid zones will prove to be far more mobile than currently appreciated
    • …
    corecore