142 research outputs found

    Magnetic particles with polymeric shells bearing cholesterol moieties sensitize breast cancer cells to low doses of doxorubicin

    Get PDF
    One of the promising strategies for improvement of cancer treatment is application of a combination therapy. The aim of this study was to investigate the anticancer activity of nanoformulations containing doxorubicin and iron oxide particles covered with polymeric shells bearing cholesterol moieties. It was postulated that due to high affinity to cell membranes, particles comprising poly(cholesteryl acrylate) can sensitize cancer cells to doxorubicin chemotherapy. The performed analyses revealed that the developed systems are effective against the human breast cancer cell lines MCF-7 and MDA-MB-231 even at low doses of the active compound applied (0.5 µM). Additionally, high compatibility and lack of toxicity of the tested materials against human red blood cells, immune (monocytic THP-1) cells, and cardiomyocyte H9C2(2-1) cells was demonstrated. Synergistic effects observed upon administration of doxorubicin with polymer–iron oxide hybrids comprising poly(cholesteryl acrylate) may provide an opportunity to limit toxicity of the drug and to improve its therapeutic efficiency at the same time

    Membrane-Active Thermoresponsive Block Copolymers Containing a Diacylglycerol-Based Segment: RAFT Synthesis, Doxorubicin Encapsulation, and Evaluation of Cytotoxicity against Breast Cancer Cells

    Get PDF
    Herein, we report the formation of drug delivery systems from original thermoresponsive block copolymers containing lipid-based segments. Two acrylate monomers derived from palmitic- or oleic-acid−based diacylglycerols (DAGs) were synthesized and polymerized by the reversible addition−fragmentation chain transfer (RAFT) method. Well-defined DAG-based polymers with targeted molar masses and narrow molar mass distributions were next used as macro-chain transfer agents (macroCTAs) for the polymerization of N-isopropylacrylamide (NIPAAm) or N-vinylcaprolactam (NVCL). The obtained amphiphilic block copolymers were formed into polymeric nanoparticles (PNPs) with and without encapsulated doxorubicin and characterized. Their biological assessment indicated appropriate cytocompatibility with the representatives of normal cells. Furthermore, compared to the free drug, increased cytotoxicity and apoptosis or necrosis induction in breast cancer cells was documented, including a highly aggressive and invasive triple-negative MDA-MB-231 cell line.This work was financially supported by the National Science Centre, Poland, grant no. NCN/2019/35/B/ST5/03391 (A.Z.W.). Analyses were performed in the Centre of Synthesis and Analysis BioNanoTechno of the University of Bialystok. The equipment in the Centre was funded by the EU as a part of the Operational Program Development of Eastern Poland 2007−2013, projects: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11. The biological part was performed at the Medical University of Bialystok SUB/1/DN/22/002/3327 (K.N.L.).Karolina H. Markiewicz: [email protected] Z. Wilczewska: [email protected] Kurowska - Faculty of Chemistry, University of BialystokKarolina H. Markiewicz - Faculty of Chemistry, University of BialystokKatarzyna Niemirowicz-Laskowska - Department of Experimental Pharmacology, Medical University of BialystokMathias Destarac - Laboratoire IMRCP, CNRS UMR 5623, Paul Sabatier UniversityPrzemysław Wielgat - Department of Clinical Pharmacology, Medical University of BialystokIwona Misztalewska-Turkowicz - Faculty of Chemistry, University of BialystokPaweł Misiak - − Faculty of Chemistry, University of BialystokHalina Car - Department of Experimental Pharmacology, Medical University of BialystokAgnieszka Z. Wilczewska - Faculty of Chemistry, University of BialystokSung, Y. K.; Kim, S. W. Recent Advances in Polymeric Drug Delivery Systems. Biomater. Res. 2020, 24 (1), 12.Kumar, R.; Santa Chalarca, C. F.; Bockman, M. R.; Bruggen, C. V.; Grimme, C. J.; Dalal, R. J.; Hanson, M. G.; Hexum, J. K.; Reineke, T. M. Polymeric Delivery of Therapeutic Nucleic Acids. Chem. Rev. 2021, 121 (18), 11527−11652Bochicchio, S.; Lamberti, G.; Barba, A. A. Polymer−Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021, 13 (2), 198.Wannasarit, S.; Wang, S.; Figueiredo, P.; Trujillo, C.; Eburnea, F.; Simón-Gracia, L.; Correia, A.; Ding, Y.; Teesalu, T.; Liu, D.; Wiwattanapatapee, R.; Santos, H. A.; Li, W. A Virus-Mimicking PH Responsive Acetalated Dextran-Based Membrane-Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Adv. Funct. Mater. 2019, 29 (51), No. 1905352.Alves, A. C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in Cancer: The Relevance of Drug-Membrane Interaction Studies. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (9), 2231−2244.Stewart, M. P.; Langer, R.; Jensen, K. F. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem. Rev. 2018, 118 (16), 7409−7531.Goñi, F. M.; Alonso, A. Structure and Functional Properties of Diacylglycerols in Membranes1This Work Is Dedicated to Professor Vittorio Luzzati on Occasion of His 75th Birthday.1. Prog. Lipid Res. 1999, 38 (1), 1−48Campomanes, P.; Zoni, V.; Vanni, S. Local Accumulation of Diacylglycerol Alters Membrane Properties Nonlinearly Due to Its Transbilayer Activity. Commun. Chem. 2019, 2 (1), 72.Gómez-Fernández, J. C.; Corbalán-García, S. Diacylglycerols, Multivalent Membrane Modulators. Chem. Phys. Lipids 2007, 148 (1), 1−25.Carrasco, S.; Mérida, I. Diacylglycerol, When Simplicity Becomes Complex. Trends Biochem. Sci. 2007, 32 (1), 27−36.Eichmann, T. O.; Lass, A. DAG Tales: The Multiple Faces of Diacylglycerol-Stereochemistry, Metabolism, and Signaling. Cell. Mol. Life Sci. 2015, 72 (20), 3931−3952.Schuhmacher, M.; Grasskamp, A. T.; Barahtjan, P.; Wagner, N.; Lombardot, B.; Schuhmacher, J. S.; Sala, P.; Lohmann, A.; Henry, I.; Shevchenko, A.; Coskun, Ü.; Walter, A. M.; Nadler, A. Live-Cell Lipid Biochemistry Reveals a Role of Diacylglycerol Side-Chain Composition for Cellular Lipid Dynamics and Protein Affinities. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (14), 7729−7738.Sen, N.; Hause, G.; Binder, W. H. Membrane Anchored Polymers Modulate Amyloid Fibrillation. Macromol. Rapid Commun. 2021, 42 (12), No. 2100120Watanabe, A.; Niu, J.; Lunn, D. J.; Lawrence, J.; Knight, A. S.; Zhang, M.; Hawker, C. J. PET-RAFT as a Facile Strategy for Preparing Functional Lipid-Polymer Conjugates. J. Polym. Sci., Part A: Polym. Chem. 2018, 56 (12), 1259−1268.Kurowska, I.; Markiewicz, K. H.; Niemirowicz-Laskowska, K.; Misiak, P.; Destarac, M.; Wielgat, P.; Misztalewska-Turkowicz, I.; Siemiaszko, G.; Car, H.; Wilczewska, A. Z. Membrane-Active Diacylglycerol-Terminated Thermoresponsive Polymers: RAFT Synthesis and Biocompatibility Evaluation. Eur. Polym. J. 2022, 169, No. 111154.Dizman, B.; Elasri, M. O.; Mathias, L. J. Synthesis and Characterization of Antibacterial and Temperature Responsive Methacrylamide Polymers. Macromolecules 2006, 39 (17), 5738−5746.Misiak, P.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Misztalewska-Turkowicz, I.; Wielgat, P.; Kurowska, I.; Siemiaszko, G.; Destarac, M.; Car, H.; Wilczewska, A. Z. Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells. Int. J. Nanomed. 2020, 15, 7263−7278.Siemiaszko, G.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Misztalewska-Turkowicz, I.; Dudź, E.; Milewska, S.; Misiak, P.; Kurowska, I.; Sadowska, A.; Car, H.; Wilczewska, A. Z. Synergistic Effect of Folate-Conjugated Polymers and 5-Fluorouracil in the Treatment of Colon Cancer. Cancer Nanotechnol. 2021, 12 (1), 31.Milewska, S.; Siemiaszko, G.; Wilczewska, A. Z.; MisztalewskaTurkowicz, I.; Markiewicz, K. H.; Szymczuk, D.; Sawicka, D.; Car, H.; Lazny, R.; Niemirowicz-Laskowska, K. Folic-Acid-Conjugated Thermoresponsive Polymeric Particles for Targeted Delivery of 5- Fluorouracil to CRC Cells. Int. J. Mol. Sci. 2023, 24 (2), 1364.Wang, H.; Li, Z.; Lu, S.; Li, C.; Zhao, W.; Zhao, Y.; Yu, S.; Wang, T.; Sun, T. Nano Micelles of Cellulose-Graft-Poly (l-Lactic Acid) Anchored with Epithelial Cell Adhesion Antibody for Enhanced Drug Loading and Anti-Tumor Effect. Mater. Today Commun. 2020, 22, No. 100764.Misiak, P.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Wielgat, P.; Kurowska, I.; Czarnomysy, R.; Misztalewska-Turkowicz, I.; Car, H.; Bielawski, K.; Wilczewska, A. Z. Doxorubicin-Loaded Polymeric Nanoparticles Containing Ketoester-Based Block and Cholesterol Moiety as Specific Vehicles to Fight Estrogen-Dependent Breast Cancer. Cancer Nanotechnol. 2023, 14 (1), 23.Misiak, P.; Niemirowicz-Laskowska, K.; MisztalewskaTurkowicz, I.; Markiewicz, K. H.; Wielgat, P.; Car, H.; Wilczewska, A. Z. Doxorubicin Delivery Systems with an Acetylacetone-Based Block in Cholesterol-Terminated Copolymers: Diverse Activity against Estrogen-Dependent and Estrogen-Independent Breast Cancer Cells. Chem. Phys. Lipids 2022, 245, No. 105194Zhou, S.; Fan, S.; Au-yeung, S. C. F.; Wu, C. Light-Scattering Studies of Poly(N-Isopropylacrylamide) in Tetrahydrofuran and Aqueous Solution. Polymer 1995, 36 (7), 1341−1346.Siirilä, J.; Häkkinen, S.; Tenhu, H. The Emulsion Polymerization Induced Self-Assembly of a Thermoresponsive Polymer Poly(N -Vinylcaprolactam). Polym. Chem. 2019, 10 (6), 766−775.Lee, J.-D.; Ueno, M.; Miyajima, Y.; Nakamura, H. Synthesis of Boron Cluster Lipids: Closo -Dodecaborate as an Alternative Hydrophilic Function of Boronated Liposomes for Neutron Capture Therapy. Org. Lett. 2007, 9 (2), 323−326.Bouton, J.; Van Hecke, K.; Van Calenbergh, S. Efficient Diastereoselective Synthesis of a New Class of Azanucleosides: 2′- Homoazanucleosides. Tetrahedron 2017, 73 (30), 4307−4316.Du, W.; Kulkarni, S. S.; Gervay-Hague, J. Efficient, One-Pot Syntheses of Biologically Active α-Linked Glycolipids. Chem. Commun. 2007, 23, 2336−2338.Vilela, C.; Rua, R.; Silvestre, A. J. D.; Gandini, A. Polymers and Copolymers from Fatty Acid-Based Monomers. Ind. Crops Prod. 2010, 32 (2), 97−104.Chira, N.; Nicolescu, A.; Raluca, S.; Rosca, S. Fatty Acid Composition of Vegetable Oils Determined from C-13-NMR Spectra. Rev. Chim. 2016, 67, 1257−1263.Gan, H.; Hutchinson, S. A.; Hurren, C.; Liu, Q.; Wang, X.; Long, R. L. Effect of Oleic Purity on the Chemical Structure, Thermal and Rheological Properties of Bio-Based Polymers Derived from High Oleic Cottonseed Oil via RAFT Polymerization. Ind. Crops Prod. 2021, 171, No. 113882.Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of NVinylcaprolactam and Characterization of Poly(N-Vinylcaprolactam). J. Macromol. Sci. Part A 2011, 48 (6), 467−477dos Santos, S.; Medronho, B.; dos Santos, T.; Antunes, F. E. Amphiphilic Molecules in Drug Delivery Systems. In Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment; Coelho, J., Ed.; Advances in Predictive, Preventive and Personalised Medicine; Springer Netherlands: Dordrecht, 2013; vol 4, pp 35−85.Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13 (8), 1285.Kozlovskaya, V.; Kharlampieva, E. Self-Assemblies of Thermoresponsive Poly(N -Vinylcaprolactam) Polymers for Applications in Biomedical Field. ACS Appl. Polym. Mater. 2020, 2 (1), 26−39.Zhou, Y.; Yu, J.; Feng, X.; Li, W.; Wang, Y.; Jin, H.; Huang, H.; Liu, Y.; Fan, D. Reduction-Responsive Core-Crosslinked Micelles Based on a Glycol Chitosan−Lipoic Acid Conjugate for Triggered Release of Doxorubicin. RSC Adv. 2016, 6 (37), 31391−31400.Sarkar, P.; Ghosh, S.; Saha, R.; Sarkar, K. RAFT Polymerization Mediated Core−Shell Supramolecular Assembly of PEGMA- Co-Stearic Acid Block Co-Polymer for Efficient Anticancer Drug Delivery. RSC Adv. 2021, 11 (28), 16913−16923.Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101−124.Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33 (9), 941−951.Dogra, P.; Adolphi, N. L.; Wang, Z.; Lin, Y.-S.; Butler, K. S.; Durfee, P. N.; Croissant, J. G.; Noureddine, A.; Coker, E. N.; Bearer, E. L.; Cristini, V.; Brinker, C. J. Establishing the Effects of Mesoporous Silica Nanoparticle Properties on in Vivo Disposition Using Imaging-Based Pharmacokinetics. Nat. Commun. 2018, 9 (1), 4551.Amin, K.; Dannenfelser, R.-M. In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist. J. Pharm. Sci. 2006, 95 (6), 1173−1176Totea, G.; Ionita, D.; Demetrescu, I.; Mitache, M. M. In Vitro Hemocompatibility and Corrosion Behavior of New Zr-Binary Alloys in Whole Human Blood. Cent. Eur. J. Chem. 2014, 12 (7), 796−803.Doll, D. C.; Weiss, R. B. Hemolytic Anemia Associated with Antineoplastic Agents. Cancer Treat. Rep. 1985, 69 (7−8), 777−782Kondo, M.; Oshita, F.; Kato, Y.; Yamada, K.; Nomura, I.; Noda, K. Early Monocytopenia after Chemotherapy as a Risk Factor for Neutropenia. Am. J. Clin. Oncol. 1999, 22 (1), 103−105Bousbaa, H. Novel Anticancer Strategies. Pharmaceutics 2021, 13 (2), 275.Bobrin, V. A.; Lin, Y.; He, J.; Qi, Y.; Gu, W.; Monteiro, M. J. Therapeutic Delivery of Polymeric Tadpole Nanostructures with High Selectivity to Triple Negative Breast Cancer Cells. Biomacromolecules 2020, 21 (11), 4457−4468.Milewska, S.; Niemirowicz-Laskowska, K.; Siemiaszko, G.; Nowicki, P.; Wilczewska, A. Z.; Car, H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int. J. Nanomed. 2021, 16, 6593−6644.Nohara, K.; Wang, F.; Spiegel, S. Glycosphingolipid Composition of MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Breast Cancer Res. Treat. 1998, 48 (2), 149−157.Glaria, A.; Beija, M.; Bordes, R.; Destarac, M.; Marty, J.-D. Understanding the Role of ω-End Groups and Molecular Weight in the Interaction of PNIPAM with Gold Surfaces. Chem. Mater. 2013, 25 (9), 1868−1876.Li, M.; De, P.; Gondi, S. R.; Sumerlin, B. S. End Group Transformations of RAFT-generated Polymers with Bismaleimides: Functional Telechelics and Modular Block Copolymers. J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (15), 5093−5100.Reisch, A.; Klymchenko, A. S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12 (15), 1968−1992.244854486

    Doxorubicin-loaded polymeric nanoparticles containing ketoester-based block and cholesterol moiety as specific vehicles to fight estrogen-dependent breast cancer

    Get PDF
    The presented research concerns the preparation of polymer nanoparticles (PNPs) for the delivery of doxorubicin. Several block and statistical copolymers, composed of ketoester derivative, N-isopropylacrylamide, and cholesterol, were synthesized. In the nanoprecipitation process, doxorubicin (DOX) molecules were kept in spatial polymeric systems. DOX-loaded PNPs show high efcacy against estrogen-dependent MCF-7 breast cancer cell lines despite low doses of DOX applied and good compatibility with normal cells. Research confrms the efect of PNPs on the degradation of the biological membrane, and the accumulation of reactive oxygen species (ROS), and the ability to cell cycle arrest are strictly linked to cell death.This work was fnancially supported by the National Science Centre, Poland, grant no. NCN/2016/21/B/ST5/01365.Katarzyna Niemirowicz‑Laskowska: [email protected] Z. Wilczewska: [email protected]ł Misiak - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15‑245 Białystok, PolandKatarzyna Niemirowicz‑Laskowska - Department of Experimental Pharmacology, Medical University of Bialystok, Mickiewicza 2A, 15‑089 Białystok, PolandKarolina H. Markiewicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15‑245 Białystok, PolandPrzemysław Wielgat - Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, PolandIzabela Kurowska - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15‑245 Białystok, PolandRobert Czarnomysy - Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15‑089 Białystok, PolandIwona Misztalewska‑Turkowicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15‑245 Białystok, PolandHalina Car - Department of Experimental Pharmacology, Medical University of Bialystok, Mickiewicza 2A, 15‑089 Białystok, PolandKrzysztof Bielawski - Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15‑089 Białystok, PolandAgnieszka Z. Wilczewska - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15‑245 Białystok, PolandAmin K, Dannenfelser R-M (2006) In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95(6):1173–1176.Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-borojeni AA, Sahebkar A et al (2017) The most prevalent side efects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther 24(5):189–193.Avramović N, Mandić B, Savić-Radojević A, Simić T (2020) Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 12(4):298.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424.Brenneisen P, Reichert AS (2018) Nanotherapy and reactive oxygen species (ROS) in cancer: a novel perspective. Antioxi‑dants 7(2):31.Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T (1997) Thermo-responsive polymer nanoparticles with a coreshell micelle structure as site-specifc drug carriers. J Control Release 48(2–3):157–164.Carvalho C, Santos XR, Cardoso S, Correia S, Oliveira JP, Santos SM et al (2009) Doxorubicin: the good, the bad and the ugly efect. Curr Med Chem 16(25):3267–3285.Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN et al (2016) Cholesterol biosynthesis: a mechanistic overview. Biochemistry 55(39):5483–5506.Chen H-H, Lu I-L, Liu T-I, Tsai Y-C, Chiang W-H, Lin S-C et al (2019) Indocyanine green/doxorubicin-encapsulated functionalized nanoparticles for efective combination therapy against human MDR breast cancer. Colloids Surf B Biointerfaces 177:294–305.Cho H, Cho Y-Y, Shim MS, Lee JY, Lee HS, Kang HC (2020) Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta BBA Mol Basis Dis. 1866(8):165808.d’Avanzo N, Torrieri G, Figueiredo P, Celia C, Paolino D, Correia A et al (2021) LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm 597:120346.de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V (2019) The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells 8(10):1209.Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A (2021) Size, shape, charge and “stealthy” surface: carrier properties afect the drug circulation time in vivo. Asian J Pharm Sci 16(4):444–458.Don T-M, Lu K-Y, Lin L-J, Hsu C-H, Wu J-Y, Mi F-L (2017) Temperature/pH/enzyme triple-responsive cationic protein/PAAb-PNIPAAm nanogels for controlled anticancer drug and photosensitizer delivery against multidrug resistant breast cancer cells. Mol Pharm 14(12):4648–4660.Du M, Ouyang Y, Meng F, Ma Q, Liu H, Zhuang Y et al (2019) Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomed Future Med 14(13):1771–1786.Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A et al (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29(10):2538–2549.Gonçalves M, Mignani S, Rodrigues J, Tomás H (2020) A glance over doxorubicin based-nanotherapeutics: from proof-ofconcept studies to solutions in the market. J Control Release 317:347–374.Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME et al (2008) The efect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105(33):11613–11618.Green AE, Rose PG (2006) Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomedicine 1(3):229–239.Gurunathan S, Kang M-H, Qasim M, Kim J-H (2018) Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci 19(10):3264.Han S-S, Li Z-Y, Zhu J-Y, Han K, Zeng Z-Y, Hong W et al (2015) Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small 11(21):2543–2554.He W, Ma Y, Gao X, Wang X, Dai X, Song J (2020) Application of poly(N-isopropylacrylamide) as thermosensitive smart materials. J Phys Conf Ser 1676:012063.Hortobágyi GN (1997) Anthrazykline in der Krebstherapie: Ein Überblick. Drugs 54(Supplement 4):1–7.Ibiyeye KM, Nordin N, Ajat M, Zuki ABZ (2019) Ultrastructural changes and antitumor efects of doxorubicin/thymoquinone-loaded CaCO3 nanoparticles on breast cancer cell line. Front Oncol. https://doi.org/10.3389/fonc.2019.00599.Jasinski DL, Li H, Guo P (2018) The efect of size and shape of RNA nanoparticles on biodistribution. Mol Ther 26(3):784–792Kim S, Oh W-K, Jeong YS, Hong J-Y, Cho B-R, Hahn J-S et al (2011) Cytotoxicity of, and innate immune response to, sizecontrolled polypyrrole nanoparticles in mammalian cells. Biomaterials 32(9):2342–2350.Kurowska I, Amouroux B, Langlais M, Coutelier O, Coudret C, Destarac M et al (2022a) Versatile thiolactone-based conjugation strategies to polymer stabilizers for multifunctional upconverting nanoparticles aqueous dispersions. Nanoscale. https://doi.org/10.1039/d1nr05548hKurowska I, Markiewicz KH, Niemirowicz-Laskowska K, Misiak P, Destarac M, Wielgat P et al (2022b) Membrane-active-diacylglycerol-terminated thermoresponsive polymers: RAFT synthesis and biocompatibility evaluation. Eur Polym J 169:111154.Leekha A, Kumar V, Moin I, Gurjar BS, Verma AK (2019) Modulation of oxidative stress by doxorubicin loaded chitosan nanoparticles. J Cancer Res Pract 6(2):76.Leonard RCF, Williams S, Tulpule A, Levine AM, Oliveros S (2009) Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™). Breast 18(4):218–224.Li Q, Huang C, Liu L, Hu R, Qu J (2018) Efect of surface coating of gold nanoparticles on cytotoxicity and cell cycle progression. Nanomaterials 8(12):1063.Li Y, Yang J, Sun X (2021) Reactive oxygen species-based nanomaterials for cancer therapy. Front Chem. https://doi.org/10.3389/fchem.2021.650587.López-García J, Lehocký M, Humpolíček P, Sáha P (2014) HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater 5(2):43–57.Ludwig H, Van Belle S, Barrett-Lee P, Birgegård G, Bokemeyer C, Gascón P et al (2004) The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defning the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer 40(15):2293–2306.Lv S, Li M, Tang Z, Song W, Sun H, Liu H et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efcient drug delivery system for cancer therapy. Acta Biomater 9(12):9330–9342.Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Efect of nanoparticles on the cell life cycle. Chem Rev 111(5):3407–3432.Markiewicz KH, Niemirowicz-Laskowska K, Szymczuk D, Makarewicz K, Misztalewska-Turkowicz I, Wielgat P et al (2021) Magnetic particles with polymeric shells bearing cholesterol moieties sensitize breast cancer cells to low doses of doxorubicin. Int J Mol Sci 22(9):4898.Marouf NF, Vahedian V, Mazrakhondi SAM, Kooti W, Khiavy HA, Bazzaz R et al (2020) Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn Schmiedebergs Arch Pharmacol 393(1):1–11.Metawea ORM, Abdelmoneem MA, Haiba NS, Khalil HH, Teleb M, Elzoghby AO et al (2021) A novel ‘smart’ PNIPAM-based copolymer for breast cancer targeted therapy: synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 202:111694. https://doi.org/10.1016/j.colsurfb.2021.111694.Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ (2020a) Polymeric drug delivery systems bearing cholesterol moieties: a review. Polymers 12(11):2620.Misiak P, Niemirowicz-Laskowska K, Markiewicz KH, Misztalewska-Turkowicz I, Wielgat P, Kurowska I et al (2020b) Evaluation of cytotoxic efect of cholesterol end-capped poly(N-isopropylacrylamide)s on selected normal and neoplastic cells. Int J Nanomedicine 15:7263–7278.Misiak P, Niemirowicz-Laskowska K, Misztalewska-Turkowicz I, Markiewicz KH, Wielgat P, Car H et al (2022) Doxorubicin delivery systems with an acetylacetone-based block in cholesterol-terminated copolymers: diverse activity against estrogen-dependent and estrogen-independent breast cancer cells. Chem Phys Lipids 245:105194. https://doi.org/10.1016/j.chemphyslip.2022.105194.Mussi SV, Sawant R, Perche F, Oliveira MC, Azevedo RB, Ferreira LAM et al (2014) Novel nanostructured lipid carrier coloaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. Pharm Res 31(8):1882–1892.Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111(10):6423–6451.Niaz S, Forbes B, Raimi-Abraham BT (2022) Exploiting endocytosis for non-spherical nanoparticle cellular uptake. Nanomanufacturing 2(1):1–16.Nowak M, Brown TD, Graham A, Helgeson ME, Mitragotri S (2020) Size, shape, and fexibility infuence nanoparticle transport across brain endothelium under fow. Bioeng Transl Med. https://doi.org/10.1002/btm2.10153.Olim F, Neves AR, Vieira M, Tomás H, Sheng R (2021) Self-assembly of cholesterol-doxorubicin and TPGS into prodrugbased nanoparticles with enhanced cellular uptake and lysosome-dependent pathway in breast cancer cells. Eur J Lipid Sci Technol 123(5):2000337.Paul Launchbury A, Habboubi N (1993) Epirubicin and doxorubicin: a comparison of their characteristics, therapeutic activity and toxicity. Cancer Treat Rev 19(3):197–228.Pigram WJ, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235(53):17–19.Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433.Rafyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D (2012) Comparison of safety and toxicity of liposomal doxorubicin vs.conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 1(1):10.Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U (2021) Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for efective management. Biomed Pharmacother 139:111708.Rivankar S (2014) An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 10(4):853.Roser M, Fischer D, Kissel T (1998) Surface-modifed biodegradable albumin nano- and microspheres. II: efect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263.Sadava DE (ed) (2011) Life: the science of biology, 9th edn. Sinauer Associates, W. H. Freeman & Co, Sunderland.Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8(S2):17–24.Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3(1):1–19.Shan K, Lincof AM, Young JB (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med 125(1):47–58.Shin HH, Choi HW, Lim JH, Kim JW, Chung BG (2020) Near-infrared light-triggered thermo-responsive poly(Nisopropylacrylamide)-pyrrole nanocomposites for chemo-photothermal cancer therapy. Nanoscale Res Lett 15(1):214. https://doi.org/10.1186/s11671-020-03444-4.Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2(1):17.Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249.Sznarkowska A, Kostecka A, Meller K, Bielawski KP (2016) Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8(9):15996–16016.Tacar O, Sriamornsak P, Dass CR (2012) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170.Tahover E, Patil YP, Gabizon AA (2015) Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs 26(3):241–258.Thigpen JT (2005) Innovations in anthracycline therapy: overview. Commun Oncol 2:3–7.Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315.Totea G, Ionita D, Demetrescu I, Mitache M (2014) In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood. Open Chem 12(796–803):796.Volkova M, Russell R (2012) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7(4):214–220.Wang H-Y, Hua X-W, Jia H-R, Liu P, Gu N, Chen Z et al (2016) Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots. J Mater Chem B 4(5):834–843.Wang YM, Zheng SX, Chang HI, Tsai HY, Liang M (2017) Microwave-assisted synthesis of thermo- and pH-responsive antitumor drug carrier through reversible addition–fragmentation chain transfer polymerization. Express Polym Lett 11(4):293–307.Wang H, Li Z, Lu S, Li C, Zhao W, Zhao Y et al (2020) Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor efect. Mater Today Commun 22:100764.Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Controlled Release 200:138–157.Xu Z, Yang D, Long T, Yuan L, Qiu S, Li D et al (2022) pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modifed hydroxyethyl starch for tumor chemotherapy. Carbohydr Polym 277:118827.Yang F, Teves SS, Kemp CJ, Henikof S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta BBA Rev Cancer 1845(1):84–89.Yang C, Liu SQ, Venkataraman S, Gao SJ, Ke X, Chia XT et al (2015) Structure-directing star-shaped block copolymers: Supramolecular vesicles for the delivery of anticancer drugs. J Controlled Release 208:93–105.Ye P, Ye Y, Chen X, Zou H, Zhou Y, Zhao X et al (2020) Ultrasmall Fe3O4 nanoparticles induce S-phase arrest and inhibit cancer cells proliferation. Nanotechnol Rev 9(1):61–69.Zhang Y, Xiao C, Li M, Ding J, Yang C, Zhuang X et al (2014) Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efcacy. Sci China Chem 57(4):624–632.Zhang CY, Chen Q, Wu WS, Guo XD, Cai CZ, Zhang LJ (2016) Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids Surf B Biointerfaces 142:55–64.Zhang R, Qin X, Kong F, Chen P, Pan G (2019) Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv 26(1):328–342.1412

    Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus

    Get PDF
    Group B Streptococcus (GBS) causes invasive infections in human newborns. We recently showed that the GBS beta-protein attenuates innate immune responses by binding to sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5), an inhibitory receptor on phagocytes. Interestingly, neutrophils and monocytes also express Siglec-14, which has a ligand-binding domain almost identical to Siglec-5 but signals via an activating motif, raising the possibility that these are paired Siglec receptors that balance immune responses to pathogens. Here we show that beta-protein-expressing GBS binds to both Siglec-5 and Siglec-14 on neutrophils and that the latter engagement counteracts pathogen-induced host immune suppression by activating p38 mitogen-activated protein kinase (MAPK) and AKT signaling pathways. Siglec-14 is absent from some humans because of a SIGLEC14-null polymorphism, and homozygous SIGLEC14-null neutrophils are more susceptible to GBS immune subversion. Finally, we report an unexpected human-specific expression of Siglec-5 and Siglec-14 on amniotic epithelium, the site of initial contact of invading GBS with the fetus. GBS amnion immune activation was likewise influenced by the SIGLEC14-null polymorphism. We provide initial evidence that the polymorphism could influence the risk of prematurity among human fetuses of mothers colonized with GBS. This first functionally proven example of a paired receptor system in the Siglec family has multiple implications for regulation of host immunity

    Can creditors protect themselves? : categorization and protection of individual groups of creditors through bond covenants

    No full text
    The proposed company law legislative reforms concerning deregulation of the capital maintenance regime give rise to a question about the need for implementation of the alternative creditors protection instruments. However, in the current inter-reformation period it is worth to solve a fundamental issue, which is whether in the present normative and economic Polish environment the interference of commercial companies law in the area of creditor protection through normative tools remains legitimate, or perhaps creditors are able to take care of their interests based on contractual tools. The purpose of the article is to classify, characterize and assess the potential of individual groups of creditors to independently protect their bargain through the most common and most effective contractual instrument of creditors' protection - bond covenants. In order to achieve that, the article transplants the Anglo-Saxon doctrinal discussion into the Polish market realities

    ChemInform Abstract: ALKYL 2,3,5,6-TETRAFLUOROPYRIDINE SULFIDES

    No full text
    corecore