51 research outputs found
FGF Induces New Feather Buds From Developing Avian Skin
Induction of skin appendages involves a cascade of molecular events. The fibroblast growth factor (FGF) family of peptide growth factors is involved in cell proliferation and morphogenesis. We explored the role of the FGFs during skin appendage induction using developing chicken feather buds as a model. FGF-1, FGF-2, or FGF-4 was added directly to the culture medium or was released from pre-soaked Affigel blue beads. Near the midline, FGFs led to fusion of developing feather buds, representing FGFs' ability to expand feather bud domains in developing skin. In lateral regions of the explant where feather placodes have not formed, FGF treatment produces a zone of condensation and a region with an increased number of feather buds. In ventral epidermis that is normally apteric (without feathers), FGFs can also induce new feather buds. Like normal feather buds, the newly induced buds express Shh. The expression of Grb, Ras, Raf, and Erk, intracellular signaling molecules known to be downstream to tyrosine kinase receptors such as the FGF receptor, was enriched in feather bud domains. Genistein, an inhibitor of tyrosine kinase, suppressed feather bud formation and the effect of FGF. These results indicate that there are varied responses to FGFs depending on epithelial competence. All the phenotypic responses, however, show that FGFs facilitate the formation of skin appendage domains
Spots & stripes: pleomorphic patterning of stem cells via p-ERK-depenendent cell chemotaxis shown by feather morphogenesis & mathematical simulation
A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction–diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large
Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks
Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca^(2+) channels (VGCCs), Connexin-43 based gap junctions, and Ca^(2+) release activated Ca^(2+) (CRAC) channels. 4-Dimensional Ca^(2+) imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca^(2+) oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca^(2+) landscape, cell movement patterns and feather bud elongation. Ca^(2+) oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca^(2+) profile among cells, thereby coordinating cell movement patterns
Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks
Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca^(2+) channels (VGCCs), Connexin-43 based gap junctions, and Ca^(2+) release activated Ca^(2+) (CRAC) channels. 4-Dimensional Ca^(2+) imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca^(2+) oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca^(2+) landscape, cell movement patterns and feather bud elongation. Ca^(2+) oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca^(2+) profile among cells, thereby coordinating cell movement patterns
Tuning Wnt Signals for More or Fewer Hairs
Activation of β-catenin was shown to be of central importance for hair development and cycling. Recent progress brought more understanding to how Wnt signaling is regulated during hair follicle generation and regeneration, telogen–anagen reentry, and extra-follicular macro-environmental modulation. This new understanding presents multiple possibilities to fine tune Wnt signaling for desired hair growth
- …