154 research outputs found

    Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    Get PDF
    BACKGROUND:Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS:A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS:The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties

    Get PDF
    BACKGROUND: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs). METHODS: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker analysis. RESULTS: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 mu M), the IC50 concentrations of DS in BC cell lines were 200-500 nM. Disulfiram/copper significantly enhanced (3.7-15.5-fold) cytotoxicity of paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis. Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1(+VE) and CD24(Low)/CD44(High) CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK pathways. Meanwhile, the constitutive NF kappa B activity in BC cell lines was inhibited by DS/Cu. CONCLUSION: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by simultaneous induction of ROS and inhibition of NF kappa B. British Journal of Cancer (2011) 104, 1564-1574. doi: 10.1038/bjc.2011.126 www.bjcancer.com Published online 12 April 2011 (C) 2011 Cancer Research U

    Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization

    Get PDF
    Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove

    Distinguishing Binders from False Positives by Free Energy Calculations: Fragment Screening Against the Flap Site of HIV Protease

    Full text link
    Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand–receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein–ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets

    Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/R.B.M. was a recipient of a UK Medical Research Council (MRC) studentship, MRC Centenary Award, Barts and The London Charity (472/1711) and Rosetrees Trust (M314), N.K. was a recipient of an MRC studentship (MR/J500409/1), C.J. was a recipient of the Barts and The London Charitable Foundation Scholarship (RAB 05/PJ/07), L.M. was supported by CR-UK, Breast Cancer Now (2008NovPR10) and Rosetrees Trust (M346), A.H. was a recipient of a CR-UK studentship (C236/A11795). P.J.P. was supported by CR-UK. J.I. was supported by grants from the Academy of Finland, ERC Starting grant, Finnish Cancer Organisations and Sigrid Juselius Foundation. S.K. was supported by the MRC (G0501003) and The British Lung Foundation (CAN09-4)

    Early endostatin treatment inhibits metastatic seeding of murine colorectal cancer cells in the liver and their adhesion to endothelial cells

    Get PDF
    Endostatin, a carboxy-terminal fragment of collagen XVIII, potently inhibits angiogenesis and tumour growth, presumably through induction of apoptosis in endothelial cells and/or inhibition of their migration. Here we have tested how the timing of recombinant human endostatin (rh-E) administration affects its antitumour activity in a liver metastasis model of mouse C26 colorectal carcinoma cells. The effects of rh-E treatment on hepatic tumour load and on early tumour cell seeding were evaluated. Recombinant human endostatin was most effective in reducing intrahepatic tumour growth when administered prior to tumour cell inoculation. Analysis of early tumour cell seeding by using [125I]iododeoxyuridine-labelled C26 cells or by in vivo microscopy showed that rh-E reduced tumour cell seeding in the liver sinusoids. Recombinant human endostatin did not inhibit tumour growth when administered later than 4 days after tumour injection. Pretreatment of human umbilical vein endothelial cells with rh-E in vitro reduced C26 tumour cell adhesion under flow conditions two-fold as assessed by video microscopy and multiphoton laser scanning microscopy. Our results show that rh-E, in addition to antiangiogenic effects, reduces tumour cell adhesion in the liver sinusoids during the very early phases of metastasis formation. These data point towards a previously unknown mode of action of endostatin, that is, its ability to interfere with tumour cell seeding. Such insights may be helpful in the design of trials to improve (surgical) treatment of colorectal carcinoma and liver metastases

    Receptor-Specific Mechanisms Regulate Phosphorylation of AKT at Ser473: Role of RICTOR in β1 Integrin-Mediated Cell Survival

    Get PDF
    A tight control over AKT/PKB activation is essential for cells, and they realise this in part by regulating the phosphorylation of Ser473 in the “hydrophobic motif” of the AKT carboxy-terminal region. The RICTOR-mTOR complex (TORC2) is a major kinase for AKT Ser473 phosphorylation after stimulation by several growth factors, in a reaction proposed to require p21-activated kinase (PAK) as a scaffold. However, other kinases may catalyse this reaction in stimuli-specific manners. Here we characterised the requirement of RICTOR, ILK, and PAK for AKT Ser473 phosphorylation downstream of selected family members of integrins, G protein-coupled receptors, and tyrosine-kinase receptors and analysed the importance of this phosphorylation site for adhesion-mediated survival. siRNA-mediated knockdown in HeLa and MCF7 cells showed that RICTOR-mTOR was required for phosphorylation of AKT Ser473, and for efficient phosphorylation of the downstream AKT targets FOXO1 Thr24 and BAD Ser136, in response to β1 integrin-stimulation. ILK and PAK1/2 were dispensable for these reactions. RICTOR knockdown increased the number of apoptotic MCF7 cells on β1 integrin ligands up to 2-fold after 24 h in serum-free conditions. β1 integrin-stimulation induced phosphorylation of both AKT1 and AKT2 but markedly preferred AKT2. RICTOR-mTOR was required also for LPA-induced AKT Ser473 phosphorylation in MCF7 cells, but, interestingly, not in HeLa cells. PAK was needed for the AKT Ser473 phosphorylation in response to LPA and PDGF, but not to EGF. These results demonstrate that different receptors utilise different enzyme complexes to phosphorylate AKT at Ser473, and that AKT Ser473 phosphorylation significantly contributes to β1 integrin-mediated anchorage-dependent survival of cells

    Disordered Structural Ensembles of Vasopressin and Oxytocin and Their Mutants

    Get PDF
    Vasopressin and oxytocin are intrinsically disordered cyclic nonapeptides belonging to a family of neurohypophysial hormones. Although unique in their functions, these peptides differ only by two residues and both feature a tocin ring formed by the disulfide bridge between first and sixth cysteine residues. This sequence and structural similarity are experimentally linked to oxytocin agonism at vasopressin receptors and vasopressin antagonism at oxytocin receptors. Yet single- or double-residue mutations in both peptides have been shown to have drastic impacts on their activities at either receptor, and possibly the ability to bind to their neurophysin carrier protein. In this study we perform molecular dynamics simulations of the unbound native and mutant sequences of the oxytocin and vasopressin hormones to characterize their structural ensembles. We classify the subpopulations of these structural ensembles on the basis of the distributions of radius of gyration and secondary structure and hydrogen-bonding features of the canonical tocin ring and disordered tail region. We then relate the structural changes observed in the unbound form of the different hormone sequences to experimental information about peptide receptor binding, and more indirectly, carrier protein binding affinity, receptor activity, and protease degradation. This study supports the hypothesis that the structural characteristics of the unbound form of an IDP can be used to predict structural or functional preferences of its functional bound form

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation
    corecore