1,784 research outputs found

    Automatic price comparing system for online hotel reservations

    Get PDF

    Virtual DOM Implementation in KissJS

    Get PDF
    In this fast-paced modern world, time is a major asset for most people, including web developers. When developing web applications, the language or framework being used should help the developer create applications fast and efficiently, but at the same time it should be simple enough for them to grasp it quickly. This proposed framework takes into consideration the pros and cons of modern Single Page Application (SPA) development frameworks and tries to use some their approaches to achieve efficiency, and at the same time use its own ways to simplify other tasks that are complex in the aforementioned frameworks. The main objective this framework will try to accomplish is simplify the state management process. However, this paper will focus on the change detection aspect of the framework. The method of change detection used in the framework is the virtual DOM. Reasons for moving forward with this approach will be discussed later in the paper

    Development of PP/Recycled-PET Blended Low Speed Wheels to Reduce the Virgin Plastic Usage in the Industry

    Get PDF
    The increase of plastic usage in different applications has a huge impact on the environment due waste generation. This study was focused not only to find a way to reduce the virgin plastic usage but also to convert a commodity plastic waste into a commercial engineering product. Post consumed polyethylene terephthalate (PET) water bottles were used as a source of recycled PET (r-PET) and blended with commercial grade polypropylene (PP) to produce the center part of low speed wheels. Thermomechanical properties of PP/r-PET blends were investigated along with the effect of compatibilization. The quality of prepared wheels was examined with dynamic drum test and impact test. The addition of recycled PET into polypropylene enhanced the properties of blends and it also supported to maintain the fatigue life of the wheel

    A survey on the knowledge, perceptions and practices regarding unwanted medicine disposal among pharmacists in Sri Lanka

    Get PDF
    Background: Unwanted medicines are defined as expired, unused, damaged or contaminated pharmaceutical products. Improper disposal of unwanted medicines leads to many health and environmental hazards. The World Health Organisation recommends that unwanted medicines should always be disposed properly. The main objective of this study was to assess the knowledge, practices and perceptions on the disposal of unwanted medicines among pharmacists in Sri Lanka.Methods: A cross-sectional study was carried out among pharmacists in 40 private retail pharmacies in the Northern, Eastern and the Western provinces within a period of three months. The pharmacies were selected via stratified randomised sampling in each district. The most experienced pharmacist in each pharmacy was recruited for data collection. A pre-tested, self-administered questionnaire was used. The ethics approval was obtained (Ref: EC-12-190). The data was represented using simple descriptive statistics.Results: The data was collected from 40 pharmacies. Among the pharmacists, 65% were males. The majority answered that burning and landfill as the most appropriate methods of disposal for most of the types of medicinal waste. A significant number of pharmacists were not aware about the method of disposal for anti-infective agents and anti-neoplastic agents. The majority perceived the seriousness of environmental damage caused by disposal via trash or sink. A majority was not agreeing to have pharmacies as collecting centers for unwanted medicines. A discrepancy between the pharmacists’ perceptions and the practices was observed.Conclusions: The level of knowledge, practices and perceptions among pharmacists on unwanted medicines disposal was substandard and needs attention

    Response and Survival Estimates of Patients With Plasma Cell Myeloma in a Resource-Constrained Setting Using Protocols From High-Income Countries:A Single-Center Experience From Sri Lanka

    Get PDF
    There is a significant disparity in global cancer care and outcome between countries. Progress in the treatment of symptomatic plasma cell myeloma (PCM) in high-income countries is not seen in low- and middle-income countries. MATERIALS AND METHODS: This is was a retrospective cohort study of all patients diagnosed with PCM between May 1, 2013, and September 30, 2021, at the first hemato-oncology center in Sri Lanka. We aimed to provide data on clinicopathologic characteristics, response, and survival estimates. RESULTS: A total of 79 patients with PCM received first-line therapy during the study period. The median age was 64 years, and approximately one third (33%) of patients were older than 70 years. There were 42 (53%) males and 37 females. Hypercalcemia, renal impairment, anemia, and bone disease were detected in 36.7%, 38%, 72.1%, and 81%, respectively. Thirty-nine, 34, and six patients received a combination of cyclophosphamide, thalidomide, and dexamethasone; bortezomib, thalidomide, and dexamethasone; and other treatments, respectively. The overall response rate (≥ partial response) was approximately 97% for both cyclophosphamide, thalidomide, and dexamethasone and bortezomib, thalidomide, and dexamethasone. Twenty-three (29%) of these patients died during the study period, but only 14 (18%) died due to PCM or associated sepsis. After a median follow-up of 40.6 months (range, 35.2-59.07 months), the median overall survival was 84.2 months (95% CI, 60.87 to not available). The 5-year estimated overall survival was 65%. CONCLUSION: To our knowledge, this is the only well-characterized study on long-term survival of patients with PCM in Sri Lanka. We have shown that it is possible to successfully apply Western treatment and supportive care protocols to the local population. These published data will help to benchmark and improve the treatment and develop blood cancer care in the local setting

    Triple-GEM discharge probability studies at CHARM: Simulations and experimental results

    Get PDF
    The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2^{2} and an integrated charge of 8 C/cm2^{2} over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups

    Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation

    Get PDF
    The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7th^{th} of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, pshort_{short}HV^{HV} OFF^{OFF} = 0.420.35+0.94^{-0.35+0.94}% with detector HV OFF and pshort_{short}HV^{HV} OFF^{OFF} < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure

    Benchmarking LHC background particle simulation with the CMS triple-GEM detector

    Get PDF
    In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN\u27s Large Hadron Collider (LHC). The demonstrator\u27s design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×1034^{34} cm2^{-2} s1^{-1}. The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 1011^{-11} to 104^{4} MeV for neutrons, 103^{-3} to 104^{4} MeV for γ\u27s, 102^{-2} to 104^{4} MeV for e±^{±}, and 101^{-1} to 104^{4} MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC

    Modeling the triple-GEM detector response to background particles for the CMS Experiment

    Get PDF
    An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC). The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5×1034\times10^{34} cm2^{-2} s1^{-1}. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from 101110^{-11} to 10410^{4} MeV for neutrons, 10310^{-3} to 10410^{4} MeV for γ\gamma's, 10210^{-2} to 10410^{4} MeV for e±e^{\pm}, and 10110^{-1} to 10410^{4} MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.Comment: 16 pages, 9 figures, 6 table
    corecore