35 research outputs found

    Anticoagulation with edoxaban in patients with long Atrial High-Rate Episodes ≥24 hours

    Get PDF
    BACKGROUND AND AIMS: Patients with long atrial high-rate episodes (AHRE) ≥ 24 hours and stroke risk factors are often treated with anticoagulation for stroke prevention. Anticoagulation has never been compared to no anticoagulation in these patients.METHODS: This secondary prespecified analysis of NOAH-AFNET 6 examined interactions between AHRE duration at baseline and anticoagulation with edoxaban compared to placebo in patients with AHRE and stroke risk factors. The primary efficacy outcome was a composite of stroke, systemic embolism, or cardiovascular death. The safety outcome was a composite of major bleeding and death. Key secondary outcomes were components of these outcomes and ECG-diagnosed atrial fibrillation.RESULTS: AHRE ≥24 hours were present at baseline in 259/2389 patients enrolled in NOAH-AFNET 6 (11%, 78 ± 7 years old, 28% women, CHA2DS2-VASc score 4). Clinical characteristics were not different from patients with shorter AHRE. During a median follow-up of 1.8 years, the primary outcome occurred in 9/132 patients with AHRE ≥24 hours (4.3%/patient-year, 2 strokes) treated with anticoagulation and in 14/127 patients treated with placebo (6.9%/patient-year, 2 strokes). AHRE duration did not interact with the efficacy (p-interaction = 0.65) or safety (p-interaction = 0.98) of anticoagulation. Analyses including AHRE as a continuous parameter confirmed this. Patients with AHRE ≥24 hours developed more ECG-diagnosed atrial fibrillation (17.0%/patient-year) than patients with shorter AHRE (8.2%/patient-year; p &lt; 0.001).CONCLUSIONS: This hypothesis-generating analysis does not find an interaction between AHRE duration and anticoagulation therapy in patients with device-detected AHRE and stroke risk factors. Further research is needed to identify patients with long AHRE at high stroke risk.</p

    Neuromuscular Junction Defects in Mice with Mutation of dynein heavy chain 1

    Get PDF
    Disruptions in axonal transport have been implicated in a wide range of neurodegenerative diseases. Cramping 1 (Cra1/+) and Legs at odd angles (Loa/+) mice, with hypomorphic mutations in the dynein heavy chain 1 gene, which encodes the ATPase of the retrograde motor protein dynein, were originally reported to exhibit late onset motor neuron disease. Subsequent, conflicting reports suggested that sensory neuron disease without motor neuron loss underlies the phenotypes of Cra1/+ and Loa/+ mice. Here, we present behavioral and anatomical analyses of Cra1/+ mice. We demonstrate that Cra1/+ mice exhibit early onset, stable behavioral deficits, including abnormal hindlimb posturing and decreased grip strength. These deficits do not progress through 24 months of age. No significant loss of primary motor neurons or dorsal root ganglia sensory neurons was observed at ages where the mice exhibited clear symptomatology. Instead, there is a decrease in complexity of neuromuscular junctions. These results indicate that disruption of dynein function in Cra1/+ mice results in abnormal morphology of neuromuscular junctions. The time course of behavioral deficits, as well as the nature of the morphological defects in neuromuscular junctions, suggests that disruption of dynein function in Cra1/+ mice causes a developmental defect in synapse assembly or stabilization

    Intrinsically determined cell death of developing cortical interneurons

    Get PDF
    Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk
    corecore