248 research outputs found

    Inkball Models as Features for Handwriting Recognition

    Get PDF
    Inkball models provide a tool for matching and comparison of spatially structured markings such as handwritten characters and words. Hidden Markov models offer a framework for decoding a stream of text in terms of the most likely sequence of causal states. Prior work with HMM has relied on observation of features that are correlated with underlying characters, without modeling them directly. This paper proposes to use the results of inkball-based character matching as a feature set input directly to the HMM. Experiments indicate that this technique outperforms other tested methods at handwritten word recognition on a common benchmark when applied without normalization or text deslanting

    A current-mode buck-boost DC-DC converter with fast transient response

    Get PDF
    A fast transient current-mode buckboost DC-DC converter for portable devices is presented. Running at 1 MHz the converter provides stable 3 V from a 2.7 V to 4.2 V Li-Ion battery. A small voltage under-/overshoot is achieved by fast transient techniques: (1) adaptive pulse skipping (APS) and (2) adaptive compensation capacitance (ACC). The proposed converter was implemented in a 0.25 μm CMOS technology. Load transient simulations confirm the effectiveness of APS and ACC. The improvement in voltage undershoot and response time at light-to-heavy load step (100 mA to 500 mA), are 17 % and 59 %, respectively, in boost mode and 40 % and 49 %, respectively, in buck mode. Similar results are achieved at heavy-to-light load step for overshoot and response time

    Fine-tuning of whispering gallery modes in on-chip silica microdisk resonators within a full spectral range

    Get PDF
    We investigate an efficient method for fine-tuning whispering gallery mode resonances in disk-type silica microresonators to reach an arbitrary frequency within the free spectral range of the system. This method is based on a post-production hydrofluoric acid etching process to precisely resize the radius of such microresonators. We show the effectiveness of this approach by tuning their resonance frequency within 10 GHz of specific hydrogen cyanide reference lines (P16, P18). This technique allows for simple and exact matching of narrow-linewidth lasers or spectroscopic lines with the high-Q resonances of on-chip silica microresonators. (C) 2013 American Institute of Physics. (http://dx.doi.org/10.1063/1.4789755

    Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs

    Full text link
    We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive \textit{ab initio} simulations of hydrogen-helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k2k_2 and the equidistance are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations

    On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform

    Get PDF
    One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-state qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO2 grown thermally on a Si substrate. The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q microresonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. Our approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.European Fund for Regional Development of the European UnionBundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347Peer Reviewe

    Dynamics of micro-integrated external-cavity diode lasers: Simulations, analysis and experiments

    Get PDF
    This paper reports the results of numerical and experimental investigations of the dynamics of an external cavity diode laser device composed of a semiconductor laser and a distant Bragg grating, which provides an optical feedback. Due to the influence of the feedback, this system can operate at different dynamic regimes. The traveling wave model is used for simulations and analysis of the nonlinear dynamics in the considered laser device. Based on this model, a detailed analysis of the optical modes is performed, and the stability of the stationary states is discussed. It is shown, that the results obtained from the simulation and analysis of the device are in good agreement with experimental findings
    • …
    corecore