69 research outputs found

    Volcanic Flooding Experiments in Impact Basins and Heavily Cratered Terrain Using LOLA Data: Patterns of Resurfacing and Crater Loss

    Get PDF
    Terrestrial planetary bodies are characterized by extensive, largely volcanic deposits covering their surfaces. On Earth large igneous provinces (LIPs) abound, maria cover the nearside of the Moon, and volcanic plains cover large portions of Venus, Mars and Mercury

    Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    Get PDF
    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is ~1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin

    The Distribution and Origin of Smooth Plains on Mercury

    Get PDF
    Orbital images from the MESSENGER spacecraft show that ~27% of Mercury's surface is covered by smooth plains, the majority (greater than 65%) of which are interpreted to be volcanic in origin. Most smooth plains share the spectral characteristics of Mercury's northern smooth plains, suggesting they also share their magnesian alkali-basalt-like composition. A smaller fraction of smooth plains interpreted to be volcanic in nature have a lower reflectance and shallower spectral slope, suggesting more ultramafic compositions, an inference that implies high temperatures and high degrees of partial melting in magma source regions persisted through most of the duration of smooth plains formation. The knobby and hummocky plains surrounding the Caloris basin, known as Odin-type plains, occupy an additional 2% of Mercury’s surface. The morphology of these plains and their color and stratigraphic relationships suggest that they formed as Caloris ejecta, although such an origin is in conflict with a straightforward interpretation of crater size-frequency distributions. If some fraction is volcanic, this added area would substantially increase the abundance of relatively young effusive deposits inferred to have more mafic compositions. Smooth plains are widespread on Mercury, but they are more heavily concentrated in the north and in the hemisphere surrounding Caloris. No simple relationship between plains distribution and crustal thickness or radioactive element distribution is observed. A likely volcanic origin for some older terrain on Mercury suggests that the uneven distribution of smooth plains may indicate differences in the emplacement age of large-scale volcanic deposits rather than differences in crustal formational process

    Lunar Mare Basaltic Volcanism : Volcanic Features and Emplacement Processes

    Get PDF
    Volcanism is a fundamental process in the geological evolution of the Moon, providing clues to the composition and structure of the mantle, the location and duration of interior melting, the nature of convection and lunar thermal evolution. Progress in understanding volcanism has been remarkable in the short 60-year span of the Space Age. Before Sputnik 1 in 1957, the lunar farside was unknown, the origin of the dark lunar maria was debated (sedimentary or volcanic), and significant controversy surrounded the question of how the multitude of craters on the surface formed

    Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella

    Get PDF
    The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations

    Unlocking the Climate Record Stored within Mars’ Polar Layered Deposits

    Get PDF
    In the icy beds of its polar layered deposits (PLD), Mars likely possesses a record of its recent climate history, analogous to terrestrial ice sheets that contain records of Earth's past climate. Both northern and southern PLDs store information on the climatic and atmospheric state during the deposition of each layer (WPs: Becerra et al.; Smith et al). Reading the climate record stored in these layers requires detailed measurements of layer composition, thickness, isotope variability, and near-surface atmospheric measurements. We identify four fundamental questions that must be answered in order to interpret this climate record and decipher the recent climatic history of Mars: 1. Fluxes: What are the present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. Forcings: How do orbital/axial forcing and exchange with other reservoirs affect those fluxes? 3. Layer Processes: What chemical and physical processes form and modify layers? 4. Record: What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD? In a peer reviewed report (1), we detailed a sequence of missions, instruments, and architecture needed to answer these questions. Here, we present the science drivers and a mission concept for a polar lander that would enable a future reading of the past few million years of the Martian climate record. The mission addresses as-yet-unachieved science goals of the current Decadal Survey and of MEPAG for obtaining a record of Mars climate and has parallel goals to the NEXSAG and ICE-SAG reports

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations

    Get PDF
    In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus’ atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL’s VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC’s DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet’s long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022)
    • 

    corecore