37 research outputs found

    Antimicrobial susceptibility of Gram-negative uropathogens isolated from obstetric patients.

    Get PDF
    OBJECTIVE: To evaluate the antimicrobial susceptibility of Gram-negative uropathogens isolated from pregnant women. METHODS: We performed a snapshot cohort study of women receiving care in the University of Florida prenatal clinics during March 2000. Subjects with asymptomatic bacteriuria or cystitis were identified and the antimicrobial susceptibility of each pathogen was recorded. Data were analyzed using chi-square, Fisher's exact test and ninety-five percent confidence intervals, as appropriate. RESULTS: Ninety-five positive cultures were identified. Isolates were more often susceptible to trimethoprim-sulfamethoxazole (TMP-SMX) (87%) and nitrofurantoin (89%) than to ampicillin (72%) (p < 0.03). Escherichia coli accounted for 71 (75%) cases and was more often susceptible to nitrofurantoin (100%) than to TMP-SMX (87%) (p < 0.01). Proteus isolates were all susceptible to TMP-SMX and resistant to nitrofurantoin (p < 0.01). CONCLUSIONS: Both TMP-SMX and nitrofurantoin are superior to ampicillin for empiric treatment of lower urinary tract infection in pregnant women. Nitrofurantoin is superior to TMP-SMX for treatment of infections caused by E. coli. For suspected or confirmed cases caused by Proteus organisms, TMP-SMX is the preferred agent

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Intrapartum Antibiotic Prophylaxis and Early-Onset Neonatal Sepsis Patterns

    Get PDF
    Objective: To compare the relative effects of intrapartum antibiotic prophylaxis regimens on patterns of early-onset neonatal sepsis. Methods: We performed an historical cohort study of 17 187 infants born at our center from September 1993 to February 2000. A risk-based strategy was employed prior to July 1996 and a screening-based strategy was utilized thereafter. Ampicillin was utilized prior to March 1995 and penicillin was used thereafter. Results: There were 75 cases of neonatal sepsis, 34 (4.10/1000) in the risk-based era and 41 (4.63/1000) in the screening-based era (p = 0.62). There were fewer ampicillin-resistant isolates during the risk-based than the screening-based era (32 versus 61%; p = 0.014). The only significant change in organism-specific sepsis rates was an increase in the rate of infection caused by coagulase-negative staphylococci in the screening-based era (0.36 versus 1.46/1000; p = 0.018), but 75% of infants infected with these organisms were not exposed to ß-lactam antibiotics within 72 h prior to delivery. For the risk- and screening-based eras, respectively, the rates of Gram-negative sepsis (1.21 versus 1.46/1000; p = 0.65) and the proportions of Gram-negative pathogens that were ampicillin-resistant (70 versus 77%; p = 1.0) were similar. The drug employed for prophylaxis did not appear to affect the pattern of sepsis cases. Conclusion: In our patient population, coagulase-negative staphylococci have become the most common cause of early-onset neonatal sepsis. The cause of this shift in pathogen prevalence is uncertain and seemingly unrelated to intrapartum antibiotic exposure

    MFA12 (MFA 2012)

    Get PDF
    Catalogue of a culminating student exhibition held at the Mildred Lane Kemper Art Museum May 4-Aug. 6, 2012. Contents include Introduction / Buzz Spector -- Think, make, show and tell / Patricia Olynyk -- Ifeoma Ugonnwa Anyaeji -- J.E. Baker / Elissa Yukiko Weichbrodt -- Natalie Baldeon / Emily Hanson -- As in a turning gear : E. Thurston Belmer / Rickey Laurentiis -- Lauren Cardenas / Nicholas Tamarkin -- Megan Sue Collins / Catherine Chiodo -- Adrian Cox -- Maya Durham / Dolly Laninga -- Erin Falker / Melissa Olson -- St. Louis dreamscape : Jieun Kim / Caitlin Tyler -- Howard Krohn -- Scape : Robert Long / Robert Whitehead -- Marie Bannerot McInerney / Elissa Yukiko Weichbrodt -- Ghost : Nikki McMahan / Rickey Laurentiis -- Michael T. Meier -- Katie Millitzer -- Reid G. Norris / Ross Rader -- Kathleen Perniciaro / Melissa Olson -- Emily Squires / Nicholas Tamarkin -- Jamie Presson Wells -- Whitney Lorene Wood / Reid G. Norris -- Andrew Woodard -- Kelly K. Wright -- Contributors -- About the Sam Fox School.https://openscholarship.wustl.edu/books/1003/thumbnail.jp

    First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array Prototype

    Get PDF
    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium" activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised

    Working in the Public Interest Law Conference

    Full text link
    The two-day conference included a variety of panel discussions and roundtables on such topics as: civil liberties; race and the criminal justice system; decriminalizing mental illness; funding public defender systems; the media\u27s role in the law; immigration; lesbian, gay, bisexual and transgendered youth in state sponsored institutions; environmental justice; and women\u27s reproductive rights

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore