772 research outputs found

    Application of a transonic potential flow code to the static aeroelastic analysis of three-dimensional wings

    Get PDF
    Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted

    Vegetation in Zimbabwe.

    Get PDF
    A GAZ Study Tour Lecture Paper of Zimbabwe's Eastern Highlands

    Granitic Bornhardts And Associated Landform Features In Zimbabwe

    Get PDF
    A Geographical Proceedings article on Zimbabwe's GRANITIC BORNHARDTS AND ASSOCIATED LANDFORM FEATURES.Steep-sided convex domes or bomhardts are characteristic of about one third of the granitic ‘ landscapes in central and eastern Zimbabwe. These features are associated with batholith intrusions which make up a large portion, of a massive and ancient crafon that extends some 600 kilometres in a north-east to south-west direction across the country (see Figure 1). The bombardt terrain forms a distinctive although discontinuous arc on the southern margin of this craton and the adjacent mobile belts of gneissic rocks. Morphologically, the granitic domes vary from completely stripped through to debris- covered hills, and from almost perfectly symmetrical ‘whaleback1 residuals through to irregular,-sugar-loaf features

    An exploratory study of finite difference grids for transonic unsteady aerodynamics

    Get PDF
    Unsteady aerodynamic forces are calculated by the XTRAN2L finite difference program which solves the complete two dimensional unsteady transonic small perturbation equation. The unsteady forces are obtained using a pulse transfer function technique which assumes the flow field behaves in a locally linear fashion about a mean condition. Forces are calculated for a linear flat plate using the default grids from the LTRAN2-NLR, LTRAN2-HI, and XTRAN3S programs. The forces are compared to the exact theoretical values for flat plate, and grid generated boundary and internal numerical reflections are observed to cause significant errors in the unsteady airloads. Grids are presented that alleviate the reflections while reducing computational time up to fifty-three percent and program size up to twenty-eight percent. Forces are presented for a six percent thick parabolic arc airfoil which demonstrate that the transform technique may be successfully applied to nonlinear transonic flows

    Gully Form and Development on Karoo Sediments in Central Zimbabwe: A Preliminary Survey

    Get PDF
    A Zambezia preliminary survey of Zimbabwe's gully forms and soil.About one tenth of Zimbabwe is characterized by sodic soils which are especially prone to sheetwash erosion and gullying associated with subsurface piping (Wendelaar, 1976). Although localized patches of sodic soil occur in poorly drained sites on granitic rocks, they are more widespread on Karoo sediments in the north-western, western and central parts of the country (see inset in Fig. 1). Previous research on these soils has been directed mainly at the dynamics of plant-habitat relationships, as a basis for devising suitable methods of reclamation (Dye, 1979; Dye and Walker, 1980), and at the definition of factors influencing the morphology and extension of headcuts (Stocking, 1977 and 1981). Consequently, a great deal is known already about the nature and current rates of erosion on sodic soils. However, very little basic geomorphological research has been carried out on the development and environmental significance of gully systems on the Karoo sediments or, more specifically, the fine sandy colluvium overlying these sediments

    Scaling in many-body systems and proton structure function

    Get PDF
    The observation of scaling in processes in which a weakly interacting probe delivers large momentum q{\bf q} to a many-body system simply reflects the dominance of incoherent scattering off target constituents. While a suitably defined scaling function may provide rich information on the internal dynamics of the target, in general its extraction from the measured cross section requires careful consideration of the nature of the interaction driving the scattering process. The analysis of deep inelastic electron-proton scattering in the target rest frame within standard many-body theory naturally leads to the emergence of a scaling function that, unlike the commonly used structure functions F1F_1 and F2F_2, can be directly identified with the intrinsic proton response.Comment: 11 pages, 4 figures. Proceedings of the 11th Conference on Recent Progress in Many-Body Theories, Manchester, UK, July 9-13 200

    Time-marching transonic flutter solutions including angle-of-attack effects

    Get PDF
    Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number

    NASA research in supersonic propulsion: A decade of progress

    Get PDF
    A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described

    Global perspective of nitrate flux in ice cores

    Get PDF
    The relationships between the concentration and the flux of chemical species (Cl-, NO3 - , SO42-, Na +, K + , NH4 + , Mg 2+ , Ca 2+) versus snow accumulation rate were examined at GISP2 and 20D in Greenland, Mount Logan from the St. Elias Range, Yukon Territory, Canada, and Sentik Glacier from the northwest end of the Zanskar Range in the Indian Himalayas. At all sites, only nitrate flux is significantly (a = 0.05) related to snow accumulation rate. Of all the chemical series, only nitrate concentration data are normally distributed. Therefore we suggest that nitrate concentration in snow is affected by postdepositionaJ exchange with the atmosphere over a broad range of environmental conditions. The persistent summer maxima in nitrate observed in Greenland snow over the entire range of record studied (the last 800 years) may be mainly due to NO• released from peroxyacetyl nitrate by thermal decomposition in the presence of higher OH concentrations in summer. The late winter/early spring nitrate peak observed in modern Greenland snow may be related to the buildup of anthropogenically derived N Oy in the Arctic troposphere during the long polar winter

    Climatic impact of the A.D. 1783 Asama (Japan) Eruption was minimal: Evidence from the GISP2 Ice Core

    Get PDF
    Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption
    corecore