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Mostract,

Transonic aeroelastic solutions based upon
the transonic small perturbation potential equa-
tion are studied, Time-marching transient solu-
tions of plunging and pitching airfoils are
analyzed using a complex exponential modal
identification technique, and seven alternative
{ntegration techniques for the structural equa.
tions are evaluated. The HYTRAN2 code is used
to determine transonic flutter boundaries versus
Mach number and angle-of-attack for NACA 64A0\0
and MBB A-3 airfoils, In that code, a monotcre
differencing method, which eliminates leading
edge expansion shocks, s used to solve the
potential equation, When the effect of static
pitching moment upon the angle-of -attack is
included, the MBB A-3 airfyil can have muitiple
flutter speeds at a given Mach number.

Nomenclature

a nondimensional elastic axis location,
measured from midchord
aj amplitude of ith ‘mode, eq. (10)
A,B (4%4) and (4x2) matrices, eq. (4)
b airfoil semichord, m.
cg nondimensiona) Tift coefficient,
positive downwards
m nondimensional moment coefficient
about a, positive nose up
p nondimensional pressure coefficient
(x,%) airfot) shape function
nondimensional plunge displacement of
elastic axis, positive downwards
}d?ntity matrix

1
J -
K reduced frequency, wb/U
Ka pitch spring constant

m atrfoll mass per unit span

M Mach number

M,K,B' (2x2) mass, stiffness, and input
matrices, eq. (3)

radius of gyration about elastic
axis

sisg{+jwi Laplace transform variable,
rad/sec

time, sec

integration step size, sec
airspeed, m/sec

(2x1) airload vector, eq. (3)
speed index, U/buyyu

cartesian coordinates

(4x1) state vector, eq. (4)

dimensionless static unbalance
(2x1) mode vector, eq. (3)
angle-of -attack, rad. (deg.)
ratio of specific heats

-

-<a‘<3< I X < et
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ui = of/wj damping ratio of ith mode

n (4x4) matrix, integral of ¢

alrfoll mass ratio, m/npb2

fluid density, kg/m3

W phase of ith mode, eq. {10)

velocity potential

{4x4) state transition matrix

wly y uty uncoupled plunge and pitch mode
frequencies, rad/sec

T =

-

superscripts
T transpose
. time derivative
subscripts
i index
n time step index
0 initial or steady condition
] freestream
Introduction

The calculation of aeroelastic response
characteristics in the transonic speed range is
of much current interest since the avoidance of
transonic flutter {s a key design problem,
Prior to the development of computer programs
capable of solving transonic aerodynamic pro-
blems, linear subsonic and supersonic solutions
were extended into this regime even though the
assumptions of the underlying theory were vio-
lated, The LTRAN2l computer program solves
the two.dimensional, Jow frequency, transonic,
small perturbation potential equation, Its
application to a simple aercelastic stability
problem was demonstrated by Ballhaus and
Goorjian.2 Ref. 2 1llustrates the two ap-
proaches which have been followed in the appli-
cation of transonic aerodynamic calculations to
aeroelasticity; namely, harmonic analysis and
time-marching analysis. The former assumes that
the unsteady aerodynamic forces are locally
1inear and utilizes traditional modal super~
position of harmonic loads while the latter
delays the question of linearity by calculating
the transient response of the coupled aero-
dynamic-structura) system, If the assumption of
Yocal linearity {s warranted, the harmonic
analysis approach offers a significant computa-
tional savings. Rizzetta3 examined the time-
marching technique, using a four-point Adams-
Moulton integrator for the structural equations
of motion and the LTRAN2 code to calculate the
unsteady airloads. The initial conditions
chosen were large enough that significant
nonlinear effacts occurred in the calculated
unsteady airlcads, indicating large shock
motions. Yang, Guruswamy, and Strizd studied
a time-marching scheme which coupled transient
LTRANZ solutions and a structural integrator
which assumed a linear variation of velocities.
They also compared harmonic flutter analysesd
using osciilatory airloads derived from LTRANZ
and UTRANS26.




simce the uriginal PTRANY wode 1y deourate only
at low freguencies (k<,0760), several improves
monts were made to incredse Its range of appli.
vability, Houwink and van der Vooren/ studted
the oftect of retatning the time derfvative
torms n the houndary and auxiliary conditions
tn thetr | TRANZWNLR code dnd clalmed accuracy to
k- D4, Rizzetta and ChinB retained, 1n
addition, the high frequencg (att) term 10 the
governing equation, Ysogai? has included both
of these effects in a computer code which has
boen used to generate oscillatory airloads for a
harmonic flutter analysis of a two.dimensional
atrfoil sectfon, The analysis demonstrated a
significant transonic dip in the section’s
flutter boundary, Borland and RizzettalQ have
developed a threa=dimensional unsteady aero-
dynami¢ code, XTRAN3S, and have utilized 2 cen-
tered difference structural integration ta.ani-
que to obtain transient time.marching fluther
solutions.

Application of these time dependent
smal) ~perturbation codes has been hampered by
numerical stability problems which occur for
1arge amp) ttude motion and/or large
angles-of-attack, The current study modifies
the LTRANZ2-NLR code with the monotone
differencing scheme of Engquist and Osherll
in order ta eliminate the source of this
problem, namely expansion shocks near the
alrfoil leading-edge, The resulting code is
termed HYTRANZ, This code has been used to
study the accuracy and stability o, the various
numertcal integration technigues which may be
used in transient time-marching calculations,
The accuracy of the finite.difference computer
program algorithms may be established using
recent analytic solutions by Blandl? of the
1inearized LTRANZ, HYTRAN2, and EXTRANZ
aerodynamic problems, The linearized version
of the HYTRAN2 code is then used to {nvestigate
the accuracy of various numerical integration
techniques for the structural equations of
motion, A comparison is made of transonic
flutter boundaries of the NACA 64A010 airfoil
calculated by four different nonlinear
transonic codes, The effect of angle-of-attack
upon the flutter boundaries of the NACA 64A010
and the MBB A3 airfolls is also demonstrated.
Finally, the effect upon the flutter boundary of
including the aeroelastic twisting resulting
from the steady pitching moment is demonstrated,

Unsteady Trangonic Small Perturbation Equation

The c¢alculations described herein were ob-
tained from a modified version of the LTRAN2-NLR
codg7 which solves the low frequency transonic
small perturbation (TSP) potential equation

My s )W ] b + by - 2t = 0 (1)

subject to the following airfoil toundary and
wake conditions

o, * fx + 2= 0,0<xK 1 (2a)

lo ] + {op] =05z =0, %0 (2b)

Aerodynamic loads are given in terms of 4
nondimensional pressure coefficient, (),
which in the small perturbatfon limit becomes

The airfoil coordinates are given by

25 f(x,t), and y* = 2.(2.y)Mu2, The

orfginal LTRAN2! grid of 99 by 79 points in
the x and 2 direction, respectively, with 33
points on the airfoll chord was used, The
original LTRANZ-NLR and LTRANZ codes are very
sensitive to angle~of.attack changes and large
airfoil pitehing or plunging motions, and
numerical instabiVities generated at the leading
edgeld can lead to program failure, The
monot?ne differencing method of Engquist and
Osher!) eliminates the leading edge expansion
shocks which cause this problem and has been
incorporated into the code used for this study
which is termed HYTRAN2, Solutions obtained
with the time derivative terms of (2) deleted
are referred to as LTRAN2 solutions while
solutions with a ~Mw2¢tt term added to (1)

are roferred to as EXTRANZ solutions. Refs, 8
ang 9 give results obtained from EXTRANZ type
codes,

The frequency limits of LTRAN2 and HYTRAN2
codes are generally accepted as k~0,075 and
k»0.4 respectively. These estimates are based
upon comparisons of results from linearized
versions of these finite-difference codes
{obtatned by deleting the gxoxx term in (1))
with classical solutions of the subsonic wave
equation. This has left open the questions of
convergence of solutions for a given grid and
accuracy of the solutions. Bland12 has
modified the kernel function of the Possio
integral equation to enable computation of exact
analytic solutions of the LTRAN2 and HYTRAN2
linearized problems. Figure 1 gives comparisons
of his exact ¢y solutions at M = 0.8 for
the three diffePent kernels with LTRANZ and
HYTRAN2 results for reduced frequencies up to
0.5, The finite-difference results were
obtained using 3 cycles of time marching
calculations with 360 steps per cycle. The
ayreement between the finite-difference and
analytical solutions indicates that the
finite-difference code is quite accurate for the
grid and step size used. Also, the departure of
LTRAN2 from the analytic EXTRAN2 results above
k=0.06 confirms the limitations of LTRANZ
mentioned above, The HYTRANZ results are in
better agreement with EXTRAN2 and show a gradual
departure from EXTRAN2. The selection of an
upper frequency limit on HYTRAN2 is somewhat
arbitrary,

Time~-Marching Aeroelastic Solutions

The classical description of a two-
dimensional, pitching and plunging airfoil is
assumed. The airfoil lies between +1 on the

x-axis; plunge, h, and 1ift coefficient, ¢,
are measured positive downwards at the elastic
axis, a; and pitch, o, and moment coefficient
about a, ¢y, are positive nose up, The equa-

tions of motion are written fn vector notation
as
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The statfc load coefficients, ce, and

Cnos 00 Subtracted from the tot§) coeffi.
c‘Snts during the time-marching calculation.
Thus h and o represent perturbations about
assumed Statfc operating conditions. The static
angle-of«zttack 18 & separate input to HYTRAN2
and contributes to fy in (2a), The spead

index V 1 U/bwyrn determines the density
{altitude) assumed for a calculation, As V
increases from zero, transient rusponses are
initially damped. Further increases in vV will
uspally lead to neutrally stable oscillations
characterizing a fluttar boundary. The value of
vV oat flutter s termed the flutter speed index,
Veo A fourth crder linear state equation may

be developed from (3) as

3’5 » A+ Bu {4)

where 5T » [yT &Tl » [h o b a) and

AxlO | [ , B ?
MK 0 Mg

Structural Integration Technique

published studies of time-marching aero-
elastic solutions have coupled the structura)
equations of motion to derodynamic codes using a
variety gf numericd] integration techniques.
Rizzettad used a, Adams-Multon predictor-
corrector scheme, Raf, 4 reports an algorithm
based upon an assumed linear variation of accel«
aration whilé a centered-difference intogration
tochnique was used in ref. 10, None of these
approaches takes advantage of the linear
structure of (4),

Since (4) 1§ a fintte~dimensional Mnear
differential equation, its solutionlt is

t
x(t) = o(t)x(0) + g exp[A(tet) ]Bu({r) dr (5)

The state transftion matrix 8(t) o exp[At] may
be calculated to any desired accuracy as the sum
of the first o terms of the series axpansion of
the matrix axponential function. The first term
fa (5) is the homogeneous response portion of

{4) while the second term is a convolution
fnteygral giving the forced response. For use as
¥ structural integrator in aeroelastic time
marching solutfons, (5) is rewritten to reflact
the evolution of tha structural state from \ime
stap n o to time step n#l,

X [(n1)T] = o(T7)x(nY)

©

}n+l)T
+ I exp|A((n+1)Ter) JBult) dv (6)

whare Y 15 the step size,

The alternating-direction implicit solution
algorithm used in HYTRANZ requires inree pieces
of data to caleulate the flow field potential,
onely At time step nel: )¢y, the potential
at time n, 2)xn, the boundary condition at
tima n, and 3)Xpays the boundary condition at
time n+l, Since the 1ift and moment are not
known over the interval nT<t<(n+1)Y, the
integeal in (6) must be approximated. The simp.
lest approximation {s to assume that
u(t) = u{nT) over the interval, Then Bu(nT) may
b taken out of the integral and & slight change
of notatfon gives

Xan

where the integral oF the transition matrix is

" \Fﬁn + GBUR (7)

0w [:éxp[A(T-r)] dt (8)

An Tmprovemgnt upon this approximation may
be obtatned by considering u to vary linearly
betwaen uy and upy) in (6?; Then, for small
time steps, T, the integial s nearly equal to
OB(uga + up)/2, However, upyy s not
avaiﬁab1a at this step of the algorithm and an
estimate of upg) ~ up + {upy _1‘ will
be used, The resulting algoritﬂm $

Xpg) ™ Wy b OB )72 (9)

The integration matrices & and © were calculated
using the program described in ref. 15, Unless
otherwise noted, the results presented were obe
tained from transient responses calculated using
{3) for the structural integrator. After the
steady state flow field for the static
angle-ofeattack was obtained the transient was
excited by a one percent chord displacement
tnitial condition on the plunge coordinate, The
transfant was calculated for 250 time steps
which ylelded 3-6 cysles of oscillation of the
dominant flutter mode for the examples studied,
To determine a flutter point, several transients
were calcuiated for a range of speed indices,

V. Typically, speed Indices were used which
gave <lightly suberitical damped response and
sligh.ly supercritical diverging response. The
flucter speed index was then determined by
intarpolation, Once the general nature of the
flutter boundary was understood, additional
flutter points could generally be obtained in
this manner with the calgulation of two
responses par flutter poiat,




0 bl oo tural Parameters

The structural paraneters for the two
oxample cases studied are given in Table 1,
Example ) 15 the sas= as Case A of Isoyai9lé
which was selected to have plunging and pitch-
ing normal modes simflar to those of a streams
wise section near the wingtip of a swepthack
wity, The pivotal point for the lowest fre.
quency plunging mode 1s 1,44 chord lengths
algad of the leading~edge and for the higher
frequency piteh mode it is 0,068 chordlangths
ahead of midehord, Isogailé has shown a
significant transonic dip in the flutter speed
index of this saction with the plunging mode
becoming the flutter mode at frequencies ranging
from 80160 rad/sec,

Example 2 was chosen to jnvestigate the
situation in which the normal mode frequencies
were close together and for which the higher
frequency pitch mode would become the flutter
mode, The small negative static unbalance
1eads to very little inertial coupling of the
modes and also causes the section to be
nearly statically unstable,

Table 1, SECTION STRUCTURAL PARAMETERS

— e L T - R

Ei:;b1e V|Example 2

e R s vy

a, “2 '0&042
Xn l 08 "0:036
r oo 3.48 1.872
] 60 60
Wl 1/ 100 23,5
wys /S 100 35

wind off plunge freq., r/s| 1.34 23.497
wind off pitch freq,, r/s 533.8 35,037

v T LS

qua1 ldentification‘Technique

To efficiently use the information con-
tafned in the transients, the least squares
curve fitting programn of Bennett and
Desmaraisl? was used, Both h and o responses
were fit independently by the function

m -ait
Y(t) =, + i§1 e

For the two degree.of-freedom examples treated

m was set equal to two. The complex modes thus
obtained, s{ = gf + Juj, are estimates of

the efgenvalues of the aeroelastic system and
can be plotted as a function of speed index,

¥, giving s-plane root loci of the coupled
plunge and pitch modes. Figure 2 gives a

typical transient response of the M88 A-3 airfoil
for Example 1 at M= 0,8 and an angle-of-attack

ajcos(ut + yy) (10)

w = 0, Shown at the top of figure are the &
ang o responses and the fits of the responses.
At the bottom of the figure the time histories
of the componant modes of the fits are shown,
The fits are very good and indicate that non.
lingar effects are very small,

Tahle 2 yfves the estimates of the two
modes for each of two response time histories.
Standard deviations of the estimates are coms
puted from the residuals and are given in
brackets benecath the estimates. The estimates
given by the independent fits are very consisn
tent with each other althou?h the standard
deviations are somewhat optimistic, These
results indicate that locally Vinear techniques
are a?plicable for this case involving plunging
oscillations of +0,008 semichords and
angle-of.attack oscillations of 40.25 deg.

TABLE 2+ MODAL ESTIMATES FOR MBB A-3 RESPONSE
AT M = 0.8 AND o = O DEG,

et

% e o \orad
51, rad/scc $2, rad/sec

hefit | «+122486,91 -17.24+§535.54
{:05+j .08) (.34 .32)
aefit | -.02¢386.74 | -17.94+)536.8)

(.07+4§ .07) (o42+] +43)

Airfoils

Figure 3 shows the profiles of the two
airfoil studied. Coordinates for the NACA
64A010 symmnetrical airfoil were taken from
Abbott and von Doenhoff1B and for the MBB A-3
supercritical airfoil from Bland.l19
Applications of TSP cod~s to both airfoils have
been extensively reported (e.g. refs, 3, 8, 20,
21 for the NACA 64A010 and refs. 21, 22 for the
MBB A-3), The MBB A-3 theoretical design
condftion is M« 0,765, a = 1,3 deg., and
cy = 0.58 and experimental pressure
distributions are given by Bucciantini et
al23, The airfoil slopes required by HYTRAN2
t$£gNge?erated using the geometry processor of

The MBB A-3 slopes used in ref, 21 are from
ref. 24 and were obtained from least-squares
polynomial curve fits to airfoil ordinates, The
resulting slopes are inaccurate, particularly
for the leading-edge region of the upper surface
and the trailing-edge region of the lower sur-
face where the calculated pressures®’ are
significantly different from experiment and de~
s!gn.23 This problem has been corrected in
ref, 22.

LinearizedAAeroe\astig Model

pPitching and plunging airload coefficients
from Bland's exact solutjons of the linearized
LTRAN2, HYTRANZ, and EXTRAN2 problems were used
to generate matrix Pade approximants of the
Joads using the technique described by
Edwards,25 The approximants were then avail-
able as linear differenttal equations which were




coupled to (4) to allow linear eigenvalue
andlysis of stabiiity as a function of speed
fndex. The approximants give a good
approximation of the loads along the s-plane
imaginary axis and, by analytic continuation,
are also valid for complex values of s near the
imaginary axis. These models, denoted PLTRANZ,
PHYTRANZ, and PEXTRAN2, were used to avaluate
time myrching solutions from the Yinearized TSP
equations for subcritical, critical and
supercritical flutter conditfions,

Results and Discussion

Comparison of Time.Marching and Linearized
Solutions,

Aeroelastic root loci - Figure 4 comparas
the plunge and pitch mode root locations
obtained from curve fits of the plunge response
with root Yoci calculated using the 1inearized
vade models. The time-marching calculations
were obtained from the linearized LTRAN2 and
HTRAN2 cndes using a flat plate airfoll, The
Mach number is 0,8, and the Example 1 structural
model was used with a time step of 0,001 sec,
Time-marching results are showm for V = 0,87,
1.37, and 1,75 corresponding to flutter points
of PLTRAN2, PEXTRAN2, and an unstable
condition. These speed conditions for the Pade
models are indicated by tick marks. The \rue
flutter point for this case is given by PEXYRAN2
as Ve = 1,37, we » 135 rad/sec, and k¢ =

0.127 which is closely approximated by both the
PHYTRANZ and HYTRANZ results, While the flutter
point predicted for this case by PLTRANZ at V¢
= 0.87, wge = 100 rad/sec, and k¢ = .15 is

reasonably reproduced by the LTRANZ result, both
are over 35% Yow in Ve and significantly low

in frequency. There is also good agreement
batween the time-marching results and the Pade
model results for both the stable and unstable
conditions, The pitch mode results do not show
as good correspondence, This is due to; 1)The
matrix Pade approximants are less accurate at
the high reduced frequencies and damping ratios
involved, and 2)time-marching integration errors
are of concern for the relatively high pitch
frequency of this example, Still, the HYTRAN2
results are in reasonable agreement with the
PEXTRAN2 results. These results give confidence
in the use of time-marching aervelastic studies
based upon the HYTRAN2 code,

Structural Equation Integrator Study -
Table 3 Tists seven integration techniques which
may be used for the structural equations of
motion, Each integrator was evaluated for its
ability to accurately reprodiice the PHYTRAN2
flutter point of fig. 4 as ¢ function of time
step size. Integrators Il and 12 are the state
transition matrix integrators of (7) and (9)
while 13 is (9) implemented as a predictor-
corrector. Integrator 14 is a centered
difference (in time) algorithm based upon (4)
while 15 is the centered d1ff8rence algorithm
used by Borland and RizzettalO based upon
(3).,!?tegrator 16 has been used by Yang
et a121+22while 17 is the same algorithm
implemented as predictor-corrector and which was
used in the XTRANIS code,26

Table 4 gives the flutter (plunge) and
pitch modes identified from the plunge transient
responses of Example 1 at Mach 0,8 for step
sizes of 0,0001-0,003 seconds and a speed index
of V = 1,5, Table 5 3ives the two modes
fdentified from the plunge transient responues
of Example 2 at Mich 0.8 for step sizes of
0.001-0,03 seconds and a speed index of V »
0.747. In this case the flutter root evolves
from the higher frequency pitch mode, Also
given are efgenvalues of the respective cases
from PHYTRAN2 which are the “exact" values for
the two flutter roots. This was ensured by
forcing the matrix Pade approximants to match
Bland's12 exact load values at the respective
flutter frequencias, The fluttar reduced
frequencies for the two examples of Tables 4 and
5 are k¢ » 0,126 and 0.146, respectively,

TABLE 3. STRUCYURAL EQUATION INTEGRATORS

11 oy » 9%, + OB

12 X0 = 0%, + .508[3u - v 4]

13 predictor; Ry o« 9%, +.508[3u = v 4]
corrector; x4 = 9, +.508{u 4+ u ]

18 X0 ® Xpa ® 2T[Ax, + Bu ]

16 Yooy = (20 - oMKl -y, )+ TG
16 Jppy = [97276)7T [y, -TRY, TEKF /3 + 0 ]
Inay = Vg * Ty + Yylr2

Yon = Yo+ Ty T3 4 /6
17 predictor: {integrator 1§

corrector: integrator 16 with Uy replaced

by Une)

A1l of the integrators, with the exception
of 16 and 11, were accurate for both examples
for the smallest time steps, While the modes
fdentified by Il and 16 for the smallest time
steps are perhaps acceptable, both of these
integrators degirade quickly with large time
steps. Neither predictor-corrector, 13 and 17,
was stable for larger time step sizes than the
integrator upon which they were based {12 and
16) although 17 did improve the accuracy of the
flutter root estimate over 16. The flutter mode
damping estimates of 15, 16, and 17 show a dis~-
concerting behavior of reversing trends as the
time step is increased, whereas the integrators
based upon the transition matrix (11, 12, and
13) give uniform damping estimate degradation.
The heavily damped pitch mode of Example Y {s {n
close agreement with the FHYTRAN? value for
smal]l time steps, whereas the plunge mode damp-
ing value for Example 2 which s given by
PHYTRAN2 1s only one-half the value estimated
from the HYTRANZ results. As the time step
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TABLE 4, AEROELASTIC MODES IDENTIFIED FOR EXAMPLE 1 at V » 1.5 and M « 0,8,

a), flutter (plunge) mode

£ :‘::_,F:Is

AW Y RS T ATRCETOY R RORTE B W STOR WA G WIS T S IS N G e R ]

e,
Integrator]  PIYTRANZ | 0000 | T.eoos | e [T ooz ,003
T v M6,27 | 60+0146,50 | 2,6341145.77 | 4.76+J145.35 | B.66+§144.18 | 12.11+3147,65
12 12+5146.66 .314140.,20 +23+5146,54 +33+5147,88 «914§149,91
13 12+3146,65 28+j146,03 unstable
14 »13+§146,66 unstable »
io A3+45146.65 | 26414602 | ,004§146,30 | -.69+§147.16 unstable
16 1.07+J146.52 | 4.86+§145.37 | 8.89+J144.30 | unstable
17 J143146.66 | .2143146,07 | -,22¢3146,01 unstable
b). pitch mode
T T TI0T. 3240498, 02| ~07.7744500,73 |1 08.9441521,06]-123.914§534,60|~146.32+1570.70| 154, 30+J 61 5,40
12 ' 04, 78+§507,09 [~100.60+3506.28]-113,44+3502,19]-163.45+3503,05/-283.03+]578.20
13 -04,65+§507.16 | -97.10+1507,86] unstable
14 -94,57+§507,61 unstable
15 -94.50+1507.43 | ~98,43+§509,75(~107,65+§512.72|-156,20+§528,83] unstable
16 -99.20+]512.60 [-119,17+§547,47| -74.33+3014.32] unstable
17 -95,04+1507.37 | ~98,57+§517.91] +73.18+3549.65[ unstable
TABLE 5. AEROELASTIC MODES IDENTIFIED FOR EXAMPLE 2 AT V = .747 and M = 0.8.
a), flutter (pitch) mode
““""*‘““"""T' sec,
Integrator |  PHYTRANZ L0010 005 S 02 03
0 02+§29.67 | «.02¢J29.37 | ~e12+J29,23 | -.24+428.99 | ~.38+J28.37 | -.40+127.78
12 -.004§29.43 | ,00+j29.49 | .06+329.48 | .19+329.22 .28+]28,83
13 «.014329.43 | -.03+J29.51 | -.08+129,58 | unstable
14 -,00+129.42 .08+329,89 unstable
15 -.00+329,42 | -.014329.54 | .03+§29.70 | .16+J30.08 unstable
16 -.03+j29.31 ~.204J29.14 | -.314§29.12 +89+j29.45 unstable
17 ~.00+]29.42 ~,03+§29.73 | .098+330.55 unstable
b}, plunge mode
n -7.46+4325,02 | -15.73+§22.3) |-15.94+§22.53|16.40+122,83]-20.20+322,40 |-28.674118.10
12 -15.40+322.31 {-14.494§22.34(-13,97+§21.96]-15.00+320.77 |-17.80+119.06
13 -15.40+§22,32 |~14.36+]22.46(~13.34+122.45] unstable
14 ~15.46+4322.35 [~11,10+j22.84] unstable ,
;: -15.47+j22.34 |-14.58+J22.65|-14.04+322.68|-14.38+322.64 unstable
~16.05+§22.21 |-17.46+§22.37|-19,50+23.58|. 9,32+136.49 b
7 15.404§22,24 |-14.17+§22.36) -1 2.59+122.78| " "imatanié unstable
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was fncreased, all of the integrators evantually
experienced a high frequency instability which
conld not be attributed to a structural mode
fnstability, Integrators 11 and 12 were
unstable for time steps of ,004 sec, for

Example ) and .04 sec, for Example 2. At these
time steps, the structural integration is being
pertormed with only 3.5 steps per cycle of
oscillation of the higher frequency mode. The
integrator giving the best overall performance
was 12 which gave usable flutter mode damping
results for time steps 50% larger than the naxt
best integrator, 15, Integrator 12 was used for
the remdinder of tha study.

iransonic Flutter Analysis

In this section, the techniques demonstra-
ted above ara applied to the full nonlinear
equation, (1), Flutter boundaries are presented
for the structural dynamic midel of Example 1 of
Table | and for NACA 64A0)U 4nd MBB A:3 air.
foils, Stead{-pressure distributions for the
ranges of Mach number and angle-of-attack inves-
tigated are given in figures 5 and 6, In the
cases where the steady shocks are located near
the trailing edge, the shock strengths are
of concern, For these cases in figures 5 and 6,
the computed Mach numbers ahead of the upper
surface shocks are only slightly less than 1.3 ~
the Mach number at which entropy rises start to
become Signficant indicating that these
calculations are on the edge of and possibly
outside the range of applicability of TSp
theory., At a = »1,5%, the Mach number on the
Tower surface of the MBB A-3 is such that these
cases may be beyond the scope of the TSP theory.

Effect of Integration Step Size - The
effect of integration step size upon the modes
identified from the angle-nf.attack response is
given in Table 6 for the NACA 64A010 At
¥ = 0.8, The flutter speed index is V¢ = 1,07
and k¢ = 0,139, A comparison with the
Intiorator 12 results of Table 4 indicates
slighily smaller changes due to step size in the
mode e..imates for the nonlinear tase and gives
confider:'n in the application of the
time-marching technique to nonlinear aeroelastic
problems,

Table 6, - MODAL ESTIMATES FOR NACA 64A010 AT
M= 0.8, « = 0 DEG,, AND %f = 1.07 AS A
FUNCTION OF T,

T, sec sy, r/s $2, /s

.0001 J143115,21 | -31.89+]536.26
0006 «08+3115.09 | «32.95+536.17
001 .02¢3115.18 | -35.76+3537.04
.002 ~.08+j115,54 | -42.03+544.83
.003 -.07+3116.08 | -46.07+]551.90

Effect of Anplitude - The effect of ampli-
tude on the response at flutter was studied for
the MBB A-3 airfoli ~i three conditions:

1)M »0.775 and a = O deg. where the flow is
subcritical, 2)M = 0,79375 and a » 0.5 deqg,
where there is a strong shock aft of midchord,
and 3)M = 0,8 and o = 0,5 deg, where the shock
is at the trailing-edge. TYable 7 gives the
modal estimates including the amplitude
estimates from the a«fit for M » 0,775 which is
typical, The flutter speed fndex is V¢ = 1,2}
and kg » 0,125, There is a surprisingly small
affect of amplitude upon the damping of the
flutter mode, The damping ratio, &, changes
from +0.011 for hy » 0,01 where the

oscillation amplitude is 10.28 deg, to -0,004
for hg = 0.10 where the oscillation amplitude
15 +2.97 deg, Inspection of the pressure
distribution for the hy = 0.1 case during a
tycle of oscillation revealed a complex pattern
of shock mwotion, During a portion of the cycle,
a strong shock forms near the 70% chord
position, travels forward, weakens, and
disappears between 40-50% chord, This {5 _the
type B shock motion studfed by Tidjeman,27
Also, during the nose-down portion of the cycle
a strong shock forms ut 5-10% chord on the lower
surface, [t {s interesting that the modal
amplitudes, aj, are nearly linear with respect
to hg, even for the large amplitudes studied.

At M = 0,79375 the effect of amplitude upon the
flutter mode was smaller than that shown in
Table 7, the change in the flutter root in going
from hg = 0,01 to 0,10 belng s = ~0,30+J0.69
rad/sec, At M = 0.8 the corresponding change
was s » »1,41-30.19, In all cases the standard
deviations of the estimates, which did not vary
appreciably with g, were smail and of the
order given in Tab?e 1 and the amplitudes varied
nearly linearly with hy, Calculations of
anplitude effects were made for the NACA 64A010
and similar small effects on the modal estimates
were observed, These results contrast with
Dowell et a)28 who studied forced oscillations
of the NACA 64A006 airfoil using LTRANZ and
postulated that nonlinear aerodynamics would be
{mportant at k « 0.1 for oscillatory amplitudes
greater than 0.5 degrees, In summary, it
appears that, for a given Mach number and steady
angle-of -attack, the aeroalastic response of
atrfoils with dynamics similar to those studied
may be treated as locally linear in amp)itude
within the limtts of small disturbance theory.

TABLE 7. MODAL ESTIMATES FOR MBB A-3 AT
Mx 0,775 AND o = 0 DEG. AS A FUNCTION OF ho

h s, /s s, r/s a ,degla ,deg
0 1 2 1 2

O =14314§117.17,-46.53+§529.55| .28 o34

02]-1.26+3117.171-46.,20+528.77{ .60 .66

041-1,0243117.15|-46.48+3528,28| 1.21 | 1.3

Comparison of 13p Flutter Boundaries For
Example 1 - The transonic Tlutter boundary of
Example T with an NACA 64A010 airfoil af
a = 0 deg, has been ctudied by Isogai9,16
using an EXTRAN2 code to obtain harmmonic
perturbation airloads and by Ehlers and

Weatheril129 using a transonic code, OPTRANZ,
to compute the hanmmonic linear perturbation




AT g Tee Hutter bogndarios n buth
studies wore then caleulated using traditringl
troguons yedomain techniques, The comparison of
these flutter bhoundasfes with that obtained from
time-marching solutions using HYTRANZ {s shown
in figure 7. Also shown are two flutter points
at Mach 0,8 and 0.825 which used LTRANZ
aerodynamics, As in fiyyre 4, the LTRAN?
flytter point is conservative by up to A0% 1o
flutter speed fnadex while the HYTRAN2 results
are sVightly unconservative below M = 0,85 when
sampared to EXTRANZ, The HYTRANZ results
compare favorably with Isogai's EXTRANZ results
with both giving minimun flutter speed indices
of v¢ » 0.5, The HYTRANZ and EXTRAN2 curves
are displaced from each uther by M ~ 0,015 which
may be due to differences in steady pressure
distribution caused by grid differences. The
minimum V¢ obtained using HYTRANZ occurs at M

= 0,85 whare the steady shock is at x/2b ~
0.75, The flutter speed index is slightly
greater at M = 0,875 where Isogai was unable to
obtain a flutter solution, The OPTRANZ results
(using NACA 64A010A19 airfoil coordinates) are
in reasonable agreemant with HYTRANZ and EXTRAN2
for M < 0,82, Multiple flutter points are
predicted by OPTRANZ for Mach nunbers above the
minimum M¢ (0,85 < M < 0,87) and the HYTRANZ
caleulations have confirmed this effect at M «
0.875. Ref, 29 indicates a complex flutter
boundary at larger values of V for

0.88 < M <€0.90 which has not been studied with
HYTRAN2, Thus the flutter boundary between M =
0,875 and M = 0,9 1s not shown, For M > 0.9
the shock has moved off the trailing-edde and
the EXTRAN2 and HYTRAN2 results are in good
agreement,

Effect of Angle-of~Attack = The angle.of .
attack s known to Ba an important parameter
affecting transonic flutter, Ashley30 lists
several instances of such an effect and Doggett
and Ricketts3l have studied the effect of
angle-of~attack upon an arrow-wing configura«
tion, Edwards32 giyes subcritical damping es-
timates indicating changes in damping ratio of
0,02 for a 0.3 deg Incraase in angle-of-attack
for a supercritical wing. VYates et al33 give
wind tunnel flutter test results of a similar
wing at several different angles-of-attack,

A novel feature of the flutter houndaries shown
s the occurence of multiple flutter speed
indices for Mach numbers less than that at the
bottom of the transonic dip. That is, as the
flutter speed index decreased with increasing
Mach number, cases were studied in which fupther
decreases in speed index resulted in the flutter
Mach number decreasing also, This curl-back of
the flutter boundary oc¢cured for angle~of.attack
changes of approximately two degrees, Houwink
et al34 report a similar occurrence.

The effects of angle-of-attack upon the
flutter boundaries of the NACA 64A01G and MBB
A-3 airfoils for Example 1 are shown in figures
8 and 9. Changes in « of 1,6 degrees can {nduce
& 50% drop in Vg for the NACA 64A010 between
Mach 0.775 and 0,80 and a 60% drop in V¢ for
the MBR A-3 between Mach 0.77 and 0.79. The
reduced frequencies at flutter for the two
examples range from kf = 0.12 for the higher
V¢ values to k¢ & 0.2 for the lowest, A key
feature is that the boundaries of fig, 8 show a

more gradual steepening than thosg of fig. 9 as
Mach number increases. Comparing figs, 6 and 9
indicates that the abrupt stoepening of the MBS
A.3 boundaries occurs at the Mach numbar at
which the upper surface shock forms, The
minimum V¢ of both airfoils is approximately

0.5 and is not a strong function of u. Also,
the width of the transonic dip near the minimum
Ve is greater for the NACA 64A010 than for the
M3 A3, which corralates with the change in
Mach number required for the shock to travel
from near midchord to the trailing edge (see
figs. 5 and 6). For both airfoils, the boundary
rises sharply when the shock reachas the )
trailing edge, P

Figure 10 gives the bending mode root locus
for the NACA 64A010 versus V for sevéral angles-
of ~attack and Mach numbers, Fig., 10a presents
root loci typical of the case in which the shock
has not yet moved aft on the airfoil (see fig.
5). Increasing angle-~of-attack causes a loss of
damping and a drop in flutter speed index and
frequency, Fig, 10b typifies the case in which
the shock is near the trailing edge. Minimum
values of V¢ occur for this condition and over
a small range of angle-of-attack there is 1ittle
effect upon damping or flutter frequency., In
fig., 10c. the shock is still further aft and,
for the largar values of o, has moved off of the
trailing~edge. In this case, the effect of
increasing angle-of~attack reverses, with
increasing damping resulting for a« > 0.5 deg,
Also, the locus for o » 0.75 deg, indicates the
cause of the nultiple values of flutter
boundaries shown in fig, 7. Nonu of these
mechanisms appear to address the exgerimental
condition described by Yates et al33 and
Houwink et al34 in which the flutter boundary
was multiple valued for Mach numbers less than
that at the bottom of the transonic¢ dip. This
observation led to the fnvestigation described
in the following section of the effect of
aervelastic twist due to the static pitching
moment ,

Effect of Static Pitching Moment - In (3),
tm, 4Gts as a preload which is adjusted to
matntain the airfoil at a desired steady angle
of attack., An alternative viewpoint is adupted
in this section by introducing the wind-off
angle-of-attack, ag, and rewriting the static
pitching moment equation as

k (amag) = 1/200%(20)%c (a, #) (1)
which may be reorganized as

Vac n!‘i (u-'clo)/Z cm(u. M) (12)

Equation (122 {s a nonlinear equation relating
the equilibrium angle-of.attack, «, to the speed
index, Vv, for given values of ag and M. With
reference to strip-theory type analyses of
wings, op may be regarded as a "wing root
angle.of.attack"” and o as the local section
angle-of-attack, The static pitching moment
coefficient, ¢y(a), is plotted versus o and M
for the NACA 64A010 and MBB A-3 airfoils in



figs, V1 and 12, For 2 given Mach number, the
pitching moment curves display three ‘
characteristics as a increases: 1)}A range of o
in which cy varias relatively linearly with o
which corresponds Lo the transition from
shockless flow to flow with mild shocks (see
figs. 5 and 6), 2)a range of a {n which cy
rises steeply corresponding to strong shocks
moving aft on the airfoil, and 32& range in
which ¢y 4gain varies Jinearly with o with a
slope nitich is independent of M corresponding to
supersonic flow over the upper surface of the
afrfoil, Note particularly that the slope of
the ¢y curve in the first region varies
gradually for the symmetrical NACA 64A010 with
both M and o whereds the slope of the ¢, curve
for the supercritical MBB A-3 is almost
independent of M and a in this region,

Figures 8 and 9 give flutter boundaries as
a function of o, In order to determine flutter
boundaries as a function of p, taking into
account twisting due to the steady pitching
moment, the data from figs, 8 and 9 were cross-
plotted versus a for fixed M and solutions of
{12) superimposed. Figures 13 and 14 give such
plots for the NACA G4ADIO at M = .8 and the MBB
A-3 at M = ,775, Intersections of the solution
of (12) for a given ag with the flutter bound-
ary curve represent flutter points at the indi.
cated value of o, Figure 13 {s typical for the
NACA 64A010 in that only one flutter point
occurs for each value of ag. In rontrast,
fig, 14 shows that the M8B A-3 has three flutter
points for a range of ag near 4 deg. This
occurs due to the steeper slope of the flutter
boundary curves of the MBB A-3 coupled with the
pitching moment behavior shown in fig, 12,

Figures 15 and 16 present the effect of
static pitching moment upon the flutter boundary
of the two airfoils for 20 < ay ¢ 59,

Comparing figs. 8 and 15, the effect for the
NACA 64A010 is to steepen the flutter boundaries
for Mach numbers between M = 0,75 and 0.8,
Comparing Figs. 9 and 16, the effect for the MBB
A<3 is much more pronounced, Multiple flutter
points for a given Mach number cause the flutter
boundary to cur) back as V {s decreased for ag

> 3 deg, The amount of the curl-back in flutter
Wach number s similar to that shown in ref,

33, At ag = 4 deg. Mg decreases 0,025 as

V¢ decreases from 1.1 to 0.65. The flutter
boundaries shown in figs, 15 and 16 for Vf <

0.8 correspond to Mach number and
angle.of-attack combinatinns {n which the shock
has moved aft on the airfiil, In these cases,
unmodeled boundary layer effects are probably
important, Nevertheless, the similarity of the
flutter boundary cur! back seen in fig, 16 to
those shown in refs, 33 and 34 indicates that
static aeroelastic twisting can have a
significant effect upon transonic flutter,

The multiple valued flutter curves shown in
fig. 16 have an interesting interpretation in
terms of flutter testing. At M=0.775 and
ag = 3 deg,, the bending mode root locws as a
fupction of spead index is shorny in fig, 17,

The speed index, V, and actual angle~of-attack,
oy are noted along the locus and show that the

airfoil is twisted nose down as V is increased.
Shown near ¥ » 0,6 and a » 1 deg, §s a local
minimum in damping due to the proximity to the
pg = 3 deg flutter boundary shown in fig. 16,
As V increasas, the mode becomes damped again
and finally flutters at V¢ » 1,3 where a «
=0,7 deg, A small fncrease in either M or ag
would lead to flutter at Vg ~ 0,6, The flutter
point at w » 133 rad/sec corresponds to a
classical type of flutter in which significant
frequency coalescence occurs. The incipient
flutter condition at w = 85 rad/sec has much
less frequency coalescence and is similar to
cases which have been termed “single Segree of
freedom* or "shock induced® flutter,d
Inspection of the static pressure distributions
corresponding to these two conditions in fig, 6
indicates that the lower frequency flutter
occgrs when a shock has developed on the upper
surface,

Concluding Remarks

The transonic small perturbation equation
has been coupled with the structural equations
of motion of a pitching and plunging airfei) and
time-marching transient flutter solutions have
been obtained, Accurate frequency and damping
estimates were obtained by means of a complex
exponential least squares curve fit of the re-
sponses, Tne accuracy of the time.marching
calculations was established by comparison of
results from the linearized transonic equation
and by comparison of the flutter boundary ob-
tained with the nonlinear equation with pub.
lished results. Seven candidate numerica)
{ntegration algorithms for the structural equa-
tions were evaluated, The preferred algorithm
fs a modified state transition matrix integrator
which was more accurate and stable for larger
time steps than the others,

The flutter boundaries of symmetrical NACA
64A010 and supercritical MBB A-3 airfoils were
determined for anp example demonstrating a pro-
nounced transonic dip, Comparison of flutter
boundaries calculated using several nonlinear
transonic aerodynamic codes show good agreement
in predicting the transonic dip. The response
at flutter was surprisingly Yinear in amplitude
for angle-of.attack oscillations of up to three
degrees, The effect of angle-of-attack upon the
flutter boundaries of the two airfoils was
determined, Changes of 1.5 deg in
angle~of -attack can cause a 50% decrease in
flutter speed index for the NACA 64A010 and a
60% decrease for the MBB A-3. The slope of the
flutter boundary with Mach number {s larger for
the MBB A.3 airfoil and appears to correlate
with steady shock strength and 1ncations on the
airfoil, When aeroelastic twisting due to the
static pitching moment {s included, the steeper
flutter boundary of the MBB A-3 leads to the
occurrence of multiple flutter points for a
given Mach number and a situation in which the
flutter boundary Mach number decreases as speed
index s decreased, This effect has been
observed in flutter model tests,
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attack,
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Fig., 7 Comparison of NACA 64A010 calcuiated
flutter boundaries.
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Fig. 8 Effect of angle-of.attack upon NACA
64A010 flutter boundaries obtained from
HYTRANZ ,
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Fig. 10 NACA 64A010 flutter mode root locus as
a function of M, V, and
angle~-of-attack.
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Fig. 11 static pitching moment of NACA 64A010

sbout x/b = -2 as a function of Mach
number and angle-of-attack.
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x/b = -2 as a function of Mach number
and angle~of -attack,
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Fig. 13 Graphical determination of NACA 64A0)0

flutter conditions at M = 0,8 including
effect of static pitching moment,
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Fig, 15 The effect of static pitching moment on
NACA 64A010 flutter boundaries.
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