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AN EXPLORATORY STUDY OF FINITE DIFFERENCE GRIDS
FOR TRANSONIC UNSTEADY AERODYNAMICS

David A. Seidel, Robert M. Bennett, and Woodrow Whitlow, Jr.

ABSTRACT

Unsteady aerodynamic forces are calculated by the XTRANZ2L finite
difference program which solves the complete two-dimensional unsteady tran-
sonic small perturbation equation. The unsteady forces are obtained using a
pulse-transfer function technique which assumes the flow field behaves in a
locally-linear fashion about a mean condition. Forces are calculated for a
linear flat plate using the default grids from the LTRAN2-NLR, LTRANZ2-HI, and
XTRAN3S programs. The forces are compared to the exact theoretical values for
flat plate, and grid-generated boundary and internal numerical reflections are
observed to cause significant errors in the unsteady airloads. Grids are pre-
sented that alleviate the reflections while reducing computational time up to
fifty-three percent and program size up to twenty-eiaht percent. Forces are
presented for a six percent thick parabolic arc airfoil which demonstrate that
the transform technique may be successfully applied to non-linear transonic
flows.

NOMENCLATURE
c airfoil chord
Cog unsteady lift force coefficient, per radian of pitch angle
Cmg, unsteady pitching moment coefficient, per radian of pitch angle
PP,
Cp pressure coefficient, 3
airfoil contour
k reduced frequency, %@
Mo freestream Mach number
p local static pressure
Poo freestream static pressure
Qoo freestream dynamic pressure
t time, seconds
Voo freestream velocity
X,z orthogonal coordinates in physical space
X,Z non-dimensional orthogonal coordinates in physical space (%— %-)
a angle of attack radians
Y ratio of specific heats
v* 2 - (2-yMa?
) airfoil thickness ratio
E,n orthogonal coordinates in computational space
tv

. o0
T scaled time, e



At scaled time step

¢ perturbation velocity potential

w frequency of oscillation, radian/second

Subscript

0 initial or steady-state value

[ ] denotes jump in quantity across a discontinuity
INTRODUCTION

Considerable effort is underway to develop finite difference computer
codes for calculating transonic unsteady aerodynamics for flutter and other
aeroelastic analyses. Difference equations are solved for a finite number of
discrete points in the flow field using the technigues that have enjoyed
considerable success in steady transonic flow analyses. The distribution of
arid points for steady flows is a topic of active research.l.  Current
practice is to map the physical domain to a finite computational region using
smoothly varying stretchina functions. In the calculation of unsteady flows
an added concern is the dynamic behavior of the computed solution since
spurious reflections due to rapid chanaes in grid spacina and from the outer
edges of the computational domain are possible. In steady flows these effects
are suppressed by iterating solutions until all dynamic phenomenon have
subsided. Thus special emphasis must be given to the development and
evaluation of finite difference grids for unsteady problems.

Several investigations have calculated unsteady transonic flows with
finite difference techniques.2-2%  Some have used the higher level flow
equations such as the Navier-Stokes equationsz, the Euler equations3‘5 and
the full potential equation.6-11 ~ In these codes the grid is generally
curvilinear, moving with the airfoil motion and auite complex in nature. 1In
these works some variations of the internal parameters are made to verify the
results but little documentation of the influence of the grid variations is
given. Considerable work has been done using the low freouency versions of
the transonic small (?erturbation (TSP) eauationl2-15 including extensive
flutter calculations.l9-17 Recent efforts have been directed at solving the
complete TSP equation!8-24 which 1is applicable to higher reduced
frequencies. The grid system for the TSP eauations is considerably simplified
as the boundary conditions are applied on a mean line representing the airfoil
and wake, and the grid remains stationary. Normally a rectilinear grid is
used with various spacing schemes to enhance the treatment of local phenomena.

There are some documented efforts that have shown sianificant effects of
the grid on unsteady flow prob]ems.11:20s21 In ref. 11, it was demonstrated
that if the grid was stretched too rapidly, such that the flow field was
inadequately resolved, spurious effects can occur in the time domain
solution. The investigation of ref. 20 indicated that such effects could be
alleviated for the TSP equation with a more gentle stretchina of the arid.
During the development of the freauency domain perturbation method of refs.
21-22, significant difficulty was encountered until it was noted that an
inadequate number of field points were being used to describe the wavelengths
involved. Increasing the point density corrected the problem.
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In the initial application of the three-dimensional TSP program
XTRAN3S23 at NASA Langley Research Center, indications of grid generated
anomalies were observed. To permit economical assessment of the grid
questions, a corresponding two-dimensional proaram, XTRAN2L, was used. The
program XTRAN2L is a version of the HYTRANZ codel® modified to solve the
complete TSP equation. The purpose of this paper is to describe both the
results and the methodology used in assessing the computational grids. The
approach taken is basically one of performing numerical experiments. The
linearized TSP equation applied to a flat plate airfoil is used for the test
case in order to permit comparisons with exact results. The airfoil is given
a small prescribed pulse in angle of attack and the aerodynamic transients are
calculated. A transfer function analysis using fast Fourier transforms is
then used to obtain a detailed description of the aerodynamic forces in the
frequency domain. This paper presents the results for various computational
grids and also illustrates their use for a parabolic arc airfoil in transonic
flow.

ANALYSIS TECHNIQUE AND APPLICATION

Unsteady Transonic Small Perturbation Equation

A1l calculations were obtained usina the code XTRANZ2L which solves the
complete unsteady transonic small perturbation (TSP) potential equation

2.2 2 2

k™M 2kM_ 1-M_ 9
= - *.
273 oo * 73 b { 273 Mo (v +1)¢g} beetoo (1)
where Y* = 2 - (2-y)MaZ,. which is based on the scaling used in the

LTRAN2-NLR program.l4 The airfoil flow tangency and trailing edge
conditions are applied on the n = 0 line and, in the small perturbation
approximation, become

b= fe tkFL 3n=%0,0<82] (2a)

[¢] +k[o ] =0 5n=0,8=1 (2b)

The wake, which is represented as a slit downstream of the airfoil trailing
edge, has the boundary condition

[6g) +k[e =0 5 n=0,¢>1 (3)

Numerical solutions of Eq. (1) were obtained using the alternating-
direction 1implicit algorithm of Rizzetta and Chipn.l!8 ~ The Rizzetta-Chin
algorithm is similar to that used in the LTRAN2 codel? with the addition
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kM2

of a three-time-level representation of the —773 .. term on the n-sweep.
)

The code XTRAN2L was developed by incorporatin% the Rizzetta-Chin algorithm
into the low/moderate frequency code HYTRANZ.1 The HYTRAN2 program is a
modified version of the LTRAN2-NLR code which was derived from the LTRAN2
program. The TSP eguation and boundary conditions in the LTRAN2 program are
low frequency approximations and do not include the time derivative terms.
The HYTRAN2 code (and LTRAN2-NLR) is a moderate freauency version and includes
the time derivative terms in the boundary conditions. Since XTRANZL solves
the complete TSP equation, it has no restrictions on the allowable values of k
(LTRAN2 begins to fail at k = 0.075, and HYTRAN2 is valid for k < 0.4).

Engquist and Majda25 developed far-field radiation boundary conditions
2,2
koM
for the low frequency equation (without the 3—273— L. term) which were

incorporated into LTRANZ by Kwak.26  Those boundary conditions reduced the
disturbances reflecting from the computational boundaries. Since the boundary
conditions of ref. 25 are applicable only to the low freauency equation,
far-field radiation conditions consistent with Eq. (1) have heen developed and
implemented into XTRAN2L. These conditions allow the use of smaller grids
while significantly reducing reflections from the grid boundaries. Far-field
radiation boundary conditions were used in analyzina the XTRAN2L default orid
while reflecting far-field boundary conditions described in ref. 14 were used
in analyzing all the other grids.

Pulse Technique

In order to determine the accuracy of results obtained using a particular
grid, the linear unsteady aerodynamic forces on a flat plate are calculated
for a wide range of reduced frequencies. The forces are compared to the known
exact theoretical values to determine the arid characteristics. Typically,
unsteady aerodynamic forces are determined by calculating several cycles of
forced harmonic oscillations with the last cycle providing the estimate of the
forces. Alternatively, the estimates may be obtained from Fourier traniforma-
tion of the response to a step change in a given mode of motion.l The
harmonic oscillation technioue is costly since calculations may be required
for 5-10 reduced frequencies. In contrast, the indicial response approach can
be inaccurate for finite difference solutions of Eq. (1). The discontinuous
jnitial condition caused by a step function can only be rouahly approximated
and thus an error in the calculation of the airfoil loads is introduced and
the resulting forces can be inaccurate. It was suggested in ref. 27 that the
use of a smooth pulse would alleviate this problem. A different pulse from
that of ref. 27 is used in this study. It is a pulse in pitch about the
auarter-chord defined by

- e-(t-rc)z
@=9* 3o
where
T¢c = 57-5AT

This gives a pulse with a maximum amplitude of one-half degree with a
smooth transition from a steady-state condition to the pulse. The calculation



is carried out for a total of 1024 time steps to assure a return of the flow
field to the steady-state condition.

Fast Fourier transforms (FFTs) of the 1ift coefficient, the moment
coefficient about the quarter-chord, and the angle of attack time histories
are then calculated. The 1ift and moment coefficient FFTs are divided by the
a FFT to obtain the frequency response functions for Ceo and cp, as
shown in Fig. 1. For most cases the unsteady 1ift and moment show the same
grid characteristics, and only the calculated 1ift is shown. The pulse was
designed to have sufficient magnitude to obtain reasonable results for
frequencies up to k = 2.0. The use of the pulse and transfer function
technique gives considerable detail in the frequency domain with a significant
reduction in cost over calculating discrete oscillations.

The 1linear analysis 1is performed for a flat plate at M, = 0.850,
At = w/12.80, a9 = 0. rad. and Vo/c = 100.0. The resulting forces are
compared to the exact forces calculated by a two-dimensional subsonic kernel
function aerodynamics program described in ref. 28. The comparison gives an
excellent indication of the effect of the grid for a wide range of reduced
frequencies. The analysis is also performed on a 6% thick parabolic arc
airfoil at the same conditions as the flat plate to demonstrate the non-linear
transonic effects. For 1ifting conditions, the steady-state and unsteady
algorithms converge to slightly different solutions, so before the pulse is
applied the airfoil is held fixed and the unsteady solution is calculated for
1024 time steps to obtain a consistent initial condition. This ensures that
the 1ift and moment after the pulse return to the initial values and
eliminates low frequency errors which might be introduced in the FFT results.

Grids Analyzed

Five computational grids are evaluated usina the pulse-transfer function
techniaue. Three are the default grids from currently used TSP finitg
difference programs; the LTRANZ-NLR proaram,14 the LTRAN2-HI proaram,l
and the x,z grid of the XTRAN3S program.23 In addition, two grids designed
to improve the accuracy of the calculated forces are analyzed.

The default grid of the LTRAN2-NLR program consists of 99 x 79 points in
x,z, and the grid coordinates for the flat plate case are listed in Table 1.
Figure 2 illustrates the LTRAN2-NLR grid in the region around the flat plate
with a typical airfoil drawn to illustrate the airfoil location. The physical
_grid for the flat plate case extends from -1034c to 856c¢ in x and ¥3860c in z
with 33 arid points on the airfoil. Since the far-field boundary conditions
of the LTRAN2-NLR program are reflectina, the physical mesh extent is several
thousand chordlenaths in both directions. The TSP equation is solved in a
transformed coordinate system, so the physical grid 1is mapped into
computational coordinates. In LTRAN2-NLR the computational space &,n grid is
identical for all cases and related to the physical x,z grid by

¢ n
{cMi(v*ﬂ) }

X
y 4

1/3

The physical x grid is fixed and the z grid varies with Mach number, thickness
ratio, and ratio of specific heats. For the flat plate airfoil a value of
6 = 0.005 is used. :
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TABLE 1. LTRAN2-NLR DEFAULT GRID FOR M, = 0.850, & = 0.005

INDEX

X

y4

LONAOHBWN =

-1033.53047
-749,90681
-544,02252
-394.58328
-286.12668
-207.42501
-150.32551
-108.90823

-78.87451
-57.10299
-41.32715
-29.90121
-21.63011
-15.64610
-11.31906
-8.19147
-5.93108
-4.29666
-3.11304
-2.25301
-1.62421
-1.15958
-.81673

.56674

. 38898

.26502

.17974

.12149

-.08171

-.05433

-.03517

-.02142

-.01123

-.00330
.00330
.00929
.01534
.02204
.03003
.03998
.05260
.06871
.08916
.11478
.14619
.18359

-3860.13477
-2503.05607
-1649.54460
-1112.74704
-775.13626
-562.80681
-429.26193
-335.50205
-262.01548
-204.43719
-159.34467
-124.04846
-96.43506
-74.85272
-57.99242
-44,84499
-34.60124
-26.62805
-20.44467
-15.64648
-11.94312
-9.08705
-6.89740
-5.21708
-3.94327
-2.97364
-2.24154
-1.69079
-1.27761
-.96725
-.73306
-.55312
-.41080
-.29403
-.19140
-.11662
-.06997
-.04046
-.01571
0.00000
.01571
.04046
.06997
.11662
.19140
.29403




TABLE 1. - CONTINUED

INDEX X z

47 .22663 .41080
48 .27436 .55312
49 .32552 .73306
50 .37877 .96725
51 .43295 1.27761
52 .48720 1.69079
53 .54078 2.24154
54 .59298 2.97364
55 .64314 3.94327
56 .69075 5.21708
57 .73559 6.89740
58 77770 9.08705
59 .81705 11.94312
60 .85334 15.64648
61 .88595 20.44467
62 .91425 26.62805
63 .93798 34.60124
64 .95746 44 .,84499
65 .97351 57.99242
66 .98726 74 .85272
67 1.00000 96.43506
68 1.01306 124.04846
69 1.02785 159.34467
70 1.04593 204.43719
71 1.06923 262.01548
72 1.10047 335.50205
73 1.14381 429.26193
74 1.20541 562.80681
75 1.29376 775.13626
76 1.41949 1112.74704
77 1.59483 1649.54460
78 1.83264 2503.05607
79 2.15087 3860.13477
80 2.58083

81 3.17250

82 3.99545

83 5.14646

84 6.76021

85 9.02411

86 12.19890

87 16.64743

88 22.87456

89 31.58279

90 43.74965

91 60.73530

92 84.43235

93 117.47431




TABLE 1. - CONTINUED

INDEX X z
94 163.52559
95 227.68509
96 317.04773
97 441.48577
98 614.73612
99 855.91313

The LTRAN2-HI default grid consists of 113 x 97 points in the x,z plane
and is listed in Table 2 and illustrated in Fig. 3. For the flat plate case
the physical extent of the grid is #200c in x and ¥2327c¢ in z with 48 grid
points on the airfoil. The far-field boundary conditions in the program are
also reflecting so the physical extent is auite large. The computational &,n
grid in LTRAN2-HI is related to physical x,z space hy

X =g
n

Z=——1736

The x arid is again fixed while the z arid depends only upon the thickness
ratio.

TABLE 2. LTRAN2-HI DEFAULT GRID FOR & = 0.005

INDEX X z
1 -200.00000 -2326.50510
2 -132.08390 | -1694.05485
3 -87.24290 -1240.86615
4 -57.65660 -914.,37169
5 -38.15274 -677.87267
6 -25.31051 -h05.62532
7 -16.86743 -379.48372
8 -11.32718 -286.59564
9 -7.70010 -217.81429
10 -5.33166 -166.59850
11 -3.788396 -128.24781
12 -2.78570 -99.36814
13 -2.13252 -77.49680
14 -1.70418 -60.83830
15 -1.41785 -48.07719
16 -1.21875 -38.24505
17 -1.07500 -30.62553




TABLE 2. - CONTINUED.

~ INDEX X z
18 -.95000 -24.68612
19 -.82500 -20.02908
20 -.70000 -16.35590
21 -.57500 -13.44147
22 -.45625 -11.11518
23 -.35000 -9.24715
24 -.25625 -7.73799
25 -.18125 -6.51133
26 -.12500 -5.50815
27 -.08188 -4.,68267
28 -.05375 -3.99918
29 -.03625 -3.42973
30 -.02375 -2.95229
31 -.01500 -2.54946
32 -.00813 -2.20742
33 -.00250 - -1.91512
34 .00250 -1.66372
35 .00750 -1.44609
36 .01250 -1.25646
37 .01750 -1.09014
38 .02250 -.94330
39 .02750 -.81278
40 .03250 -.69600
41 .03813 -.59080
42 .04563 -.49539
43 .05500 -.40827
44 .06500 -.32815
45 .07500 -.25398
46 .08563 -.18482
47 .09875 -.11988
48 .11703 -.05848
49 .14204 0.00000
50 .17188 .05848
51 .20313 .11988
52 .23438 .18482
53 .26563 .25398
54 .29688 .32815
55 .32813 .40827
56 .35938 .49539
57 .39063 .59080
58 .42188 .69600
59 .45313 .81278
60 .48438 .94330
61 .51563 1.09014
62 .54688 1.25646
63 .57813 1.44609
64 .60938 1.66372
65 .64063 1.91512




TABLE 2. - CONTINUED

INDEX X b4
66 .67188 2.20742
67 .70313 2.54946
68 .73438 2.95229
69 .76563 3.42973
70 . 79688 3.99918
P! .82813 4.68267
72 .85797 5.50815
73 .88235 6.51133
74 .90000 7.73799
75 .91500 9.24715
76 .93000 11.115618
77 .94500 13.44147
78 .96000 16.35590
79 .97500 20.02908
80 .98875 24.68612
81 1.00000 30.62553
82 1.01125 38.24505
83 1.02750 48.07719
84 1.05375 60.83830
85 1.09500 77.49680
86 1.15375 99.36814
87 1.22500 128.24781
88 1.30625 166.59850
89 1.40000 217.81429
90 1.50625 286.59564
91 1.62500 379.48372
92 1.75000 505.62532
93 1.87500 677.87267
94 2.01875 914.37169
95 2.22799 1240.86615
96 2.51972 1694 .05485
97 2.92056 2326.50510
98 3.46671
99 4.20744

100 5.20975

101 6.56481

102 8.39662

103 10.87389

104 14.22615

105 18.76560

106 24.91700

107 33.25817

108 44 ,57519

109 59.93742

110 80.79963

111 109.1408&

112 147.65347

113 200.00000
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The grid implemented in XTRANZL 1is de
- the calculated forces for two-dimensional f1

signed to improve the accuracy of

ow problems. It is 80 x 61 points

in x,z and is listed in Table 3 and shown in Fig. 4

extends F20c in x and ¥25¢ in z with 51
The physical extent of the grid is fixed

grid in XTRANZL by

1
n

' {6ME(Y*+1)}

The computational £ grid is fixed for all

depending upon Mo, &, and vy*.
far-field radiation boundary conditions

reducing the physical extent covered. Reduc
allows the number of points in the grid to b
of more grid points on the airfoil
XTRAN2L grid consists of a smoo

downstream of the airfoil.

On the airfoil, the LTRAN2-NLR and LTRAN2-HI
points near the 1leading and trailing edaes bec
pressure near the airfoil edges.
near the middle of the airfoil.

of the same magnitude

edges so the grid spacing
Unfortunately, the shock ve

have relatively large grid

Since the pressure gradient acro
the trailing edge, the XTRAN2L arid has no s
near the airfoil trailing edge.
equally spaced to allow a bett
Keyfitz,
spacing near a blunt leading edge is
results may be ohtained for a medium mesh spacing.
is used near the leading edge but a grid point was
in defining a blunt airfoil.

transient motion.

The XT

shock

problems while the n arid wil vary
RANZL grid takes advantage of the
in the program by
ing the area covered by the grid
e decreased, permits the inclusion
s and reduces the computational cost.
th stretching in z and in x upstream and

incorporated

pressure

ss a shock may be areater than that near
pecial concentration of points
The XTRAN2L grid points on the airfoil were
er shock definition for any position and
show that the grid

Melnick and Grossman2®

important in TSP codes and the best
Thus no fine arid spacing
added near the nose to aid

TABLE 3. XTRAN2L DEFAULT GRID
INDEX X z

1 -20.00000 -25.00000
2 -16.30961 -23.36111
3 -13.10054 -21.77778
4 -10.33987 -20.25000
5 -7.99453 -18.77778
6 -6.03136 -17.36111
7 -4.,41705 -16.00000

11

The physical grid
grid points lying on the airfoil.
and is related to the computational

programs concentrate grid
ause of rapid changes in
The arid spacing on the airfoil is maximum
Yet the change in pressure across a shock is
the change !

around the
ry likely will occur in the region where both arids
spacing, causing reduced shock resolution.

should




TABLE 3. CONTINUED

INDEX X z

8 -3.11817 -14.69444
9 -2.10110 -13.44444
10 -1.33204 -12.25000
11 -.77699 -11.11111
12 -.40170 -10.02778
13 -.17160 -9.00000
14 -.05175 -8.02778
15 -.00667 -7.11111
16 .00667 -6.25000
17 .02000 -5.44444
18 .04000 -4.69444
19 .06000 -4.,00000
20 .08000 -3.36111
21 .10000 -2.77778
22 .12000 -2.25000
23 .14000 -1.77778
24 .16000 -1.36111
25 .18000 -1.00000
26 .20000 -.69444
27 .22000 -.44444
28 .24000 -.25000
29 .26000 -.11111
30 .28000 -.02778
31 .30000 0.00000
32 .32000 .02778
33 .34000 11111
34 . 36000 .25000
35 .38000 .44444
36 40000 .69444
37 .42000 1.00000
38 .44000 1.36111
39 .46000 1.777178
40 .48000 2.25000
a1 .50000 2.77778
42 .52000 3.36111
43 .54000 4.00000
a4 .56000 4.69444
45 .58000 5.44444
46 .60000 6.25000
a7 .62000 7.11111
48 .64000 8.02778
49 .66000 9.00000
50 .68000 10.02778
51 70000 11.11111
52 .72000 12.25000
53 . 74000 13.44444
54 .76000 14.69444
55 .78000 16.00000
56 .80000 17.36111

12




TARLE 3. CONTINUED

INDEX X z
57 .82000 18.77778
58 .84000 20.25000
59 .86000 21.77778
60 .88000 23.36111
61 .90000 25.00000
62 .92000
63 .94000
64 .96000
65 .98000
66 1.00000
67 1.02000
68 1.12274
69 1.35473
70 1.75323
71 2.35080
72 3.17695
73 4,25898
74 5.62249
75 7.29170
76 2.28970
77 11.63860
78 14.35968
79 17.47352
80 21.00000

The XTRAN3S program is a 3-dimensional TSP finite difference code. For
analysis with the XTRAN2L program the default x,z arid defined at the root
chord is studied. The grid coordinates are listed in Table 4 and the near-
field grid is shown in Fig. 5. The physical extent of the grid is from -15¢c
to 27c in x and %13c in z with 39 grid points on the airfoil. The XTRAN3S
program has reflecting far-field boundary conditions and the arid is limited
to 60 x 40 points in the x,z plane. This limitation results in the boundaries
being defined very close to the airfoil as compared to the previously
described grids. The physical grid is invariant and related to the XTRAN3S
computational grid by

X=Xg =&

zZ=n
where x is the 1leading edge location (=0 at root chord). The
computat+§na1 and physical grids at the root chord are 1dentica1 and are
problem independent. For analysis with XTRAN2L a grid row at z = 0 was added

to the XTRAN3S default z grid because the XTRAM2L program requires a grid row
at z = 0 while the XTRAN3S program does not.
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TABLE 4. XTRAN3S DEFAULT GRID
INDEX X z
1 -15.37500 -13.03750
2 -7.69250 -6.63750
3 -3.85000 -3.43750
4 -1.,92750 -1.83750
5 -.96500 -1.03750
6 -.48250 -.63750
7 -.24000 -.43750
8 -.11750 -.33750
9 -.05500 -.28750
10 -.02250 -.26250
11 -.00500 -.23750
12 .00500 -.21250
13 .01500 -.18750
14 .02500 -.16250
15 .03500 -.13750
16 .04500 -.11250
17 .06000 -.08750
18 .08000 -.06250
19 .10000 -.03750
20 .13000 -.01250
21 .16000 0.00000
22 .19000 .01250
23 .22000 .03750
24 .25000 .06250
25 .28000 .08750
26 .31000 .11250
27 .34000 .13750
28 .37000 .16250
29 .40000 .18750
30 .43000 .21250
31 .46000 .23750
32 .49000 .26250
33 .52000 .28750
34 .55000 .33750
35 .58000 .43750
36 .61000 .63750
37 .64000 1.03750
38 .67000 1.83750
39 . 70000 3.43750
40 .73000 6.63750
41 .76000 13.03750
42 .79000
43 .82000
44 .85000
45 .88000
46 .91000
47 .93500
48 .96000
49 .98000
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TABLE 4. - CONTINUED

INDEX X z
50 1.00000
51 1.02500
52 1.07500
53 1.17500
54 1.37500
55 1.77500
56 2.57500
57 4.17500
58 7.37500
59 13.77500
60 26.57500

A revised XTRAN3S x,z grid was desianed to improve the accuracy of the
calculated forces and is listed in Table 5 and shown in Fig. 6. The physical
extent of the grid is ¥20c in x and #25¢c in z with 39 points lying on the
airfoil. The grid also is problem-independent and has a z = 0 arid line added
for the two-dimensional analysis. The grid was optimized for the available
size of 60 x 40 points in the x,z plane. To minimize the reflections from the
z boundary, the extent covered by the z grid is 1increased to %25
chordlengths. A smooth stretching is used in z and in x upstream and
downstream of the airfoil. The points on the airfoil are equi-spaced with an
additional point near the leading edge for better nose definition.

TABLE 5. REVISED XTRAN3S GRID

INDEX X z
1 -20.00000 -25.00000
2 -14.70824 -22.50164
3 -10.47170 -20.13478
4 -7.16272 -17.89941
5 -4.65677 -15.79553
6 -2.83281 -13.82314
7 -1.57362 -11.98225
8 -.76633 -10.27285
9 -.30308 -8.69494
10 -.08199 -7.24852
11 -.00877 -5.93360
12 .00877 -4,75016
13 .02632 -3.69822
14 .05263 -2.77778
15 .07895 -1.98882
16 .10526 -1.33136
17 .13158 -.80539
18 .15789 -.41091
19 .18421 -.14793
20 .21053 -.01644
21 .23684 0.00000
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TABLE 5. - CONTINUED.

INDEX X z

22 .26316 .01644
23 .28947 .14793
24 .31579 .41091
25 .34211 .80539
26 . 36842 1.33136
27 .39474 1.98882
28 .42105 2.77778
29 44737 3.69822
30 .47368 4.75016
31 .50000 5.93360
32 .52632 7.24852
33 55263 8.69494
34 .57895 10.27285
35 .60526 11.98225
36 .63158 13.82314
37 .65789 15.79553
38 .68421 17.89941
39 .71053 20.13478
40 .73684 22.50164
41 .76316 25.00000
42 .78947

44 .84211

45 .86842

46 .89474

47 .92105

48 .94737

49 .97368

50 1.00000

51 1.02632

52 1.19383

53 1.62332

54 2.42771

55 3.71531

56 5.59119

57 8.15791

58 11.51599

59 15.76424

60 21.00000

RESULTS AND DISCUSSION

Linear Flat Plate Analysis

LTRAN2-NLR GRID

The first grid analyzed using iﬂé pulse-transfer function technique is
the LTRAN2-NLR grid. The grid was analyzed using the reflecting far-field
boundary conditions used in the LTRAN2-NLR program. Figure 7 presents Ce,

versus reduced frequency for this grid at Me = 0,850 and for the
corresponding exact values obtained from a kernel function solution. In
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addition to obtaininag the unsteady forces for the complete TSP equation on
this arid, the unsteady forces fre also calculated for the low frequency
equation and boundary conditions 4 and are included to show the effect of
adding the time derivative terms to the equations.

Both finite difference solutions exhibit spurious oscillations in the
calculated unsteady forces. The complete eauation solution exhibits slightly
larger oscillations than the 1low freauency results. The 1low frequency
solution deviates from the complete and exact solutions for reduced
frequencies qreater than 0.075. Several modifications of the grid were
conducted to determine the cause of this oscillation. The resulting unsteady
forces are very insensitive to the x grid extent and spacing off of the
airfoil while the z grid extent and spacing are very critical. For the
physical time span covered in the flat plate cases, the maximum distance from
which disturbances can be reflected back to the airfoil is 4lc in x and 77¢ in
z. The x grid boundaries were moved to within 4 chordlengths of the airfoil
before any noticeable change occured in the unsteady forces, while changes
were noticeable when the z boundaries came within 75 chordlengths of the
airfoil.

The oscillations are due to internal numerical reflections in the grid
caused by stretchina too rapidly in the z direction and were traced to the
arid spacing at approximately 9 chordlenaths from the airfoil. The
disturbances from the airfoil due to the pulse are unable to propagate
accurately between the grid points which are approximately 2 chordlenaths
apart and are partially reflected back to the airfoil. The reflected
disturbances cause oscillations in the force time histories as shown in Fig. 1
and result in the oscillations in the force freauency response functions.
Adding the time derivative terms by gqoina from the Tow freauency to the
complete equation causes the oscillations to increase in magnitude.

As the reduced frequency increases, the LTRAN2-NLR forces begin to
deviate from the exact values. This is not due to the orid but is caused by
using too large a time step. The calculated forces can be brought into closer
agreement with the kernel function values at the higher reduced freauencies by
decreasina the time step. To maintain accuracy at the 1low reduced
frequencies, the number of steps should be increased such that the total time
the solution spans remains constant. The phenomenon of decreasing agreement
with the exact kernel function values for increasing reduced freauency for the
pulse-generated forces occurs for all cases in this paper since they all were
run for the identical number of time steps and total time.

LTRAN2-HI

Results from the LTRAN2-HI qrid analyzed usina reflecting far-field
boundary conditions are shown in Fig. 8. This grid is very similar to the
LTRAN2-NLR grid and shows the same oscillations in unsteady forces. Internal
grid reflections affect the forces for reduced freauencies above 0.20.
The magnitude and extent of the oscillations in the forces are not as severe
for the LTRAN2-HI agarid as for the LTRAN2-NLR oarid. This is due to the
sliahtly finer spacing of the LTRAN2-HI grid around 9 chordlengths away in z
than that found in the LTRAN2-NLR grid.
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XTRAN2L Grid

The results for the XTRAN2L grid are shown in Figs. 9 and 10. In order
to see the effect of the radiation boundary conditions, the arid was first
analyzed with the reflecting far-field boundary conditions used for the
LTRAN2-NLR and LTRAN2-HI garids (Fia. 9). The calculated forces agree quite
well with the kernel function values except for the oscillations near
k = 0.08. These oscillations are due to reflections of disturbance from the z
boundary at #25 chordlengths from the wing. Including the radiation far-field
boundary conditions alleviates the oscillations as shown in Fig. 10.

In addition to giving more accurate forces, the XTRANZ2L arid gives a
. considerable savings in computational cost due to the fewer number of grid
points used. The computer time required to calculate forces using this agrid
is 34% less than the time taken for the LTRAN2-NLR garid and 53% less than that
for the LTRAN2-HI grid. The program size is also reduced by 15% and 28% as
compared to LTRAN2-NLR and LTRAN2-HI programs respectively.

XTRAN3S Default Grid

The forces calculated for the default XTRAN3S root chord x,z grid using
reflecting far-field boundary conditions are shown in Fig. 11. Very poor
agreement with the exact values is exhibited. The XTRAN3S grid exhibits both
internal and boundary reflections. For k < 0.3 the oscillations are due to
reflections from the z boundary and for k > 0.3 are caused by internal grid
reflections from approximately 3 chordlenaths above and below the airfoil.

XTRAN3S Revised Grid

The results for the revised XTRAN3S root chord x,z qrid using reflecting
far-field boundary conditions are shown in Fig. 12. The revised grid exhibits
much better aareement with the exact values than the original arid. The
amplitude and frequency of the boundary reflections are decreased due to the -
larger extent of the grid in z. The effects of internal arid reflections are
eliminated for k < 0.50 and minimized for k > 0.50., Neither the boundary nor
the internal reflections can be eliminated completely due to the program size
restrictions and reflectina boundary conditions. The results represent a
compromise grid designed to optimize accuracy for k < 0.50, which is the range
of interest for flutter analysis.

6% Parabolic Arc Analysis

To investigate non-linear transonic effects, calculations were made for a
six percent thick parabolic arc airfoil using the LTRANZ-NLR, LTRAN2-HI, and
XTRAN2L grids. The LTRAN2-NLR and LTRAN2-HI grids were analyzed using
reflecting far-field boundary conditions while the XTRAN2L grid used the
radiation boundary conditions. The forces calculated using the XTRAN2L arid
at Mo = 0.850 are shown in Fia. 13- To verify the accuracy of the
pulse-transfer function techniaue for this non-linear case, harmonic
oscillatory solutions were obtained for discrete reduced freaquencies. Figure
13 demonstrates that the harmonic and pulse unsteady forces agree well with
each other for moderate reduced frequencies and verifies that for this case,
the unsteady forces may be treated as locally linear. As demonstrated in the
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Tinear flat plate cases, the agreement becomes worse with increasing reduced
frequency. The agreement can be improved by decreasino the time step for the
pulse case.

The forces for the three arids are compared in Figs. 14 and 15. Figure
14 demonstrates that all three arids predict values of Cg, that are close
to one another. The LTRAN2-NLR and LTRAN2-HI arids cause internal reflections
as in the linear flat plate case. The magnitude of the oscillations for this
non-linear case are smaller than for the correspondina linear cases shown in
Figs. 7 and 8. The pitchina moments shown in Fia. 15 also exhibit the
internal reflections and, in addition, demonstrate a difference in the value
of Cm, between the three grids.

To illustrate the source of the difference exhihited in the values of
Cgy > the steady-state pressure distributions of the airfoil for each arid
are shown in Fig. 16. As the grid spacing on the airfoil becomes finer, the
shock definition becomes better and the shock strength increases. As the
shock strength increases, the 1ift is not changed to any measureable degree
but the moment increases. Grid spacina along the airfoil can thus be very
important to the shock definition and hence the resultina forces.

CONCLUDING REMARKS

A pulse-transfer function method for calculatina unsteady aerodynamic
forces for a wide range of reduced frequencies has been implemented in an
unsteady transonic small perturbation finite difference code. The forces were
determined for a two-dimensional 1linear flat plate and compared to exact
theoretical values to evaluate the arid. The LTRAN2-NLR orid exhibited inter-
nal reflections which can be eliminated by improving the z stretching. The
LTRAN2-HI arid was shown to be superior to the LTRAN2-NLR arid hut to still
have internal reflections. The addition of far-field radiation boundary
conditions for the complete equation permitted a decrease in arid size and
resulted in a 34% savinas in computing time while eliminating the internal
reflections. The unsteady forces calculated with the XTRAN3S arid were shown
to be inaccurate due to boundary and internal numerical reflections. A
redesigned arid utilizina the same total number of points but spanning a
larger extent and having an improved stretching in z was shown to increase the
accuracy.

Calculations for a 6% thick parabolic arc airfoil demonstrated that orid
problems encountered for the linear flat plate airfoil also occur for
non-linear cases. The pulse-transfer function technique was shown to work for
a non-linear case, indicating that the unsteady forces can be treated as
locally Tinear. In addition, the agrid spacing was shown to influence the
shock definition which in turn affects the unsteady pitchina moment. Finer
grid spacina on the airfoil was used to adequately capture shock definition
and motion.
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Fig.v1 Pulse-transfer function analysis for unsteady aerodynamic forces.
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Fig. 2 LTRAN2-NLR default grid near the airfoil for M, = 0.850, & = 0.005.
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Fig. 3 LTRAN2-HI default grid near the airfoil for § = 0.005.
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Fig. 4 XTRAN2L default arid near the airfoil.
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Fig. 5 XTRAN3S default root chord x,z grid near the airfoil.

26




Fig. 6 Revised XTRAN3S root chord x,z grid near the airfoil.
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Fig. 7 Unsteady forces calculated for a flat plate airfoil using the:
LTRAN-NLR default grid, M, = 0.850:.
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Fig. 8 Unsteady forces calculated for a flat plate airfoil using the
LTRAN2-HI default grid, M, = 0.850.
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Fig. 9 Unsteady forces calculated for a flat plate airfoil using the XTRAN2L
default grid with reflecting far-field boundary conditions,
M. = 0.850.

30




12 —

FINITE DIFFERENCE
== === KERNEL FUNCTION

-4 I I | I
0 5 1.0 1.5 2.0

REDUCED FREQUENCY, k

Fig. 10 Unsteady forces calculated for a flat plate airfoil using the
XTRAN2L default grid with radiation far-field boundary conditions,
M. = 0.850.
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Fig. 11 Unsteady forces calculated for a flat plate airfoil using the
: default XTRAN3S root chord x,z grid, M, = 0.850.
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Fia. 12 Unsteady forces calculated for a flat plate airfoil using the
revised XTRAN3S root chord x,z grid, M, = 0.850.
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Fig. 13 Unsteady forces for a 6% parabolic arc airfoil calculated by pulse

and oscillatory analyses; XTRAN2L default grid, M, = 0.850.
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Fig. 14 ¢y, for a 6% parabolic arc airfoil calculated using the

LTRAN2-NLR, LTRAN2-HI and XTRAN2L default grids, M., = 0.850.
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Fig. 15 cm, for a 6% parabolic arc airfoil calculated using the

LTRAN2-NLR, LTRAN2-HI and XTRAN2L default grids, M. = 0.850.
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Fig; 16 Steady-state pressure distributions for a 6% parabolic arc airfoil
calculated using the LTRANZ2-NLR, LTRAN2-HI and XTRAN2L default
grids, M, = 0.850.
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