NASA-TM-84583 19850007387

NASA Technical Memorandum 84583

AN EXPLORATORY STUDY OF FINITE DIFFERENCE GRIDS FOR TRANSONIC UNSTEADY AERODYNAMICS

David A. Seidel, Robert M. Bennett and Woodrow Whitlow, Jr.

December 1982

LIBRARY COPY

JAN 2 1 1933

HAMMET RESEARCH CENTER
LIBRARY, NASA
HAMMETON, VIITORIA

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

TOR EARLY DOMESTIC DISSEMINATION;

Because of its significant early commercial potential, this information which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or a part.

Review for general release December 31, 1984

•			
			r
			•
			•
			_
		•	
			•
			·

AN EXPLORATORY STUDY OF FINITE DIFFERENCE GRIDS

FOR TRANSONIC UNSTEADY AERODYNAMICS

David A. Seidel, Robert M. Bennett, and Woodrow Whitlow, Jr.

ABSTRACT

Unsteady aerodynamic forces are calculated by the XTRAN2L finite difference program which solves the complete two-dimensional unsteady transonic small perturbation equation. The unsteady forces are obtained using a pulse-transfer function technique which assumes the flow field behaves in a locally-linear fashion about a mean condition. Forces are calculated for a linear flat plate using the default grids from the LTRAN2-NLR, LTRAN2-HI, and XTRAN3S programs. The forces are compared to the exact theoretical values for flat plate, and grid-generated boundary and internal numerical reflections are observed to cause significant errors in the unsteady airloads. Grids are presented that alleviate the reflections while reducing computational time up to fifty-three percent and program size up to twenty-eight percent. Forces are presented for a six percent thick parabolic arc airfoil which demonstrate that the transform technique may be successfully applied to non-linear transonic flows.

NOMENCLATURE

С	airfoil chord
$c_{\ell_{\alpha}}$	unsteady lift force coefficient, per radian of pitch angle
$c_{m_{\alpha}}$	unsteady pitching moment coefficient, per radian of pitch angle
	p-p _∞
cp	pressure coefficient, $\overline{q_{\infty}}$
f	airfoil contour
k	reduced frequency, $\frac{c\omega}{2V_{\infty}}$
M∞	freestream Mach number
p	local static pressure
p∞	freestream static pressure
q∞ t	freestream dynamic pressure
	time, seconds_
٧	freestream velocity
X , Z	orthogonal coordinates in physical space
x,z	non-dimensional orthogonal coordinates in physical space $(\frac{X}{C}, \frac{Z}{C})$
α	angle of attack radians
Υ	ratio of specific heats
Υ Υ* δ	$2 - (2-\gamma)M_{\infty}^{2}$
	airfoil thickness ratio
ξ,η	orthogonal coordinates in computational space
τ	scaled time, $\frac{tV_{\infty}}{c}$
	C

 $\begin{array}{lll} \Delta\tau & \text{scaled time step} \\ \varphi & \text{perturbation velocity potential} \\ \omega & \text{frequency of oscillation, radian/second} \end{array}$

Subscript

o initial or steady-state value denotes jump in quantity across a discontinuity

INTRODUCTION

Considerable effort is underway to develop finite difference computer codes for calculating transonic unsteady aerodynamics for flutter and other aeroelastic analyses. Difference equations are solved for a finite number of discrete points in the flow field using the techniques that have enjoyed considerable success in steady transonic flow analyses. The distribution of grid points for steady flows is a topic of active research.¹ Current practice is to map the physical domain to a finite computational region using smoothly varying stretching functions. In the calculation of unsteady flows an added concern is the dynamic behavior of the computed solution since spurious reflections due to rapid changes in grid spacing and from the outer edges of the computational domain are possible. In steady flows these effects are suppressed by iterating solutions until all dynamic phenomenon have subsided. Thus special emphasis must be given to the development and evaluation of finite difference grids for unsteady problems.

Several investigations have calculated unsteady transonic flows with finite difference techniques. $^{2-24}\,$ Some have used the higher level flow finite difference techniques. $^{2-24}$ Some have used the higher level flow equations such as the Navier-Stokes equations 2 , the Euler equations $^{3-5}$ and the full potential equation 6-11 In these codes the grid is generally curvilinear, moving with the airfoil motion and quite complex in nature. In these works some variations of the internal parameters are made to verify the results but little documentation of the influence of the grid variations is Considerable work has been done using the low_frequency versions of the transonic small perturbation (TSP) equation $^{12-15}$ including extensive flutter calculations. $^{16-17}$ Recent efforts have been directed at solving the equation 18-24 which is applicable to higher TSP complete frequencies. The grid system for the TSP equations is considerably simplified as the boundary conditions are applied on a mean line representing the airfoil and wake, and the grid remains stationary. Normally a rectilinear grid is used with various spacing schemes to enhance the treatment of local phenomena.

There are some documented efforts that have shown significant effects of the grid on unsteady flow problems. 11, 20, 21 In ref. 11, it was demonstrated that if the grid was stretched too rapidly, such that the flow field was inadequately resolved, spurious effects can occur in the time domain solution. The investigation of ref. 20 indicated that such effects could be alleviated for the TSP equation with a more gentle stretching of the grid. During the development of the frequency domain perturbation method of refs. 21-22, significant difficulty was encountered until it was noted that an inadequate number of field points were being used to describe the wavelengths involved. Increasing the point density corrected the problem.

In the initial application of the three-dimensional TSP program XTRAN3S²³ at NASA Langley Research Center, indications of grid generated anomalies were observed. To permit economical assessment of the grid questions, a corresponding two-dimensional program, XTRAN2L, was used. The program XTRAN2L is a version of the HYTRAN2 code¹⁶ modified to solve the complete TSP equation. The purpose of this paper is to describe both the results and the methodology used in assessing the computational grids. The approach taken is basically one of performing numerical experiments. The linearized TSP equation applied to a flat plate airfoil is used for the test case in order to permit comparisons with exact results. The airfoil is given a small prescribed pulse in angle of attack and the aerodynamic transients are calculated. A transfer function analysis using fast Fourier transforms is then used to obtain a detailed description of the aerodynamic forces in the frequency domain. This paper presents the results for various computational grids and also illustrates their use for a parabolic arc airfoil in transonic flow.

ANALYSIS TECHNIQUE AND APPLICATION

Unsteady Transonic Small Perturbation Equation

All calculations were obtained using the code XTRAN2L which solves the complete unsteady transonic small perturbation (TSP) potential equation

$$\frac{k^{2}M_{\infty}^{2}}{\frac{5^{2}/3}{2}} \phi_{\tau\tau}^{2} + \frac{2kM_{\infty}^{2}}{\frac{5^{2}/3}{2}} \phi_{\xi\tau}^{2} = \left\{ \frac{1-M_{\infty}^{2}}{\frac{5^{2}/3}{2}} - M_{\infty}^{2} (\gamma^{*+1}) \phi_{\xi} \right\} \phi_{\xi\xi}^{2} + \phi_{\eta\eta}$$
 (1)

where $\gamma^*=2-(2-\gamma)\text{M}_{\infty}^2$, which is based on the scaling used in the LTRAN2-NLR program. The airfoil flow tangency and trailing edge conditions are applied on the n = 0 line and, in the small perturbation approximation, become

$$\phi_{\eta} = f_{\xi} + kf_{\tau}$$
; $\eta = \mp 0$, $0 \le \xi \le 1$ (2a)

$$[\phi_{\xi}] + k[\phi_{\tau}] = 0$$
 ; $\eta = 0$, $\xi = 1$ (2b)

The wake, which is represented as a slit downstream of the airfoil trailing edge, has the boundary condition

$$[\phi_{\xi}] + k[\phi_{\tau}] = 0$$
 ; $\eta = 0, \xi > 1$ (3)

Numerical solutions of Eq. (1) were obtained using the alternating-direction implicit algorithm of Rizzetta and Chin. $^{18}\,\,$ The Rizzetta-Chin algorithm is similar to that used in the LTRAN2 code $^{12}\,$ with the addition

of a three-time-level representation of the $\frac{k^2 M_\infty^2}{\delta^{2/3}}$ $\phi_{\tau\tau}$ term on the n-sweep.

The code XTRAN2L was developed by incorporating the Rizzetta-Chin algorithm into the low/moderate frequency code HYTRAN2. The HYTRAN2 program is a modified version of the LTRAN2-NLR code which was derived from the LTRAN2 program. The TSP equation and boundary conditions in the LTRAN2 program are low frequency approximations and do not include the time derivative terms. The HYTRAN2 code (and LTRAN2-NLR) is a moderate frequency version and includes the time derivative terms in the boundary conditions. Since XTRAN2L solves the complete TSP equation, it has no restrictions on the allowable values of k (LTRAN2 begins to fail at k \approx 0.075, and HYTRAN2 is valid for k < 0.4).

Engquist and Majda²⁵ developed far-field radiation boundary conditions

for the low frequency equation (without the $\frac{k^2 \text{M}^2}{\delta} \phi_{\tau\tau}$ term) which were

incorporated into LTRAN2 by Kwak.²⁶ Those boundary conditions reduced the disturbances reflecting from the computational boundaries. Since the boundary conditions of ref. 25 are applicable only to the low frequency equation, far-field radiation conditions consistent with Eq. (1) have been developed and implemented into XTRAN2L. These conditions allow the use of smaller grids while significantly reducing reflections from the grid boundaries. Far-field radiation boundary conditions were used in analyzing the XTRAN2L default grid while reflecting far-field boundary conditions described in ref. 14 were used in analyzing all the other grids.

Pulse Technique

In order to determine the accuracy of results obtained using a particular grid, the linear unsteady aerodynamic forces on a flat plate are calculated for a wide range of reduced frequencies. The forces are compared to the known exact theoretical values to determine the grid characteristics. Typically, unsteady aerodynamic forces are determined by calculating several cycles of forced harmonic oscillations with the last cycle providing the estimate of the forces. Alternatively, the estimates may be obtained from Fourier transformation of the response to a step change in a given mode of motion. 13 The harmonic oscillation technique is costly since calculations may be required for 5-10 reduced frequencies. In contrast, the indicial response approach can be inaccurate for finite difference solutions of Eq. (1). The discontinuous initial condition caused by a step function can only be roughly approximated and thus an error in the calculation of the airfoil loads is introduced and the resulting forces can be inaccurate. It was suggested in ref. 27 that the use of a smooth pulse would alleviate this problem. A different pulse from that of ref. 27 is used in this study. It is a pulse in pitch about the quarter-chord defined by

$$\alpha = \alpha_0 + \frac{\pi}{360} e^{-(\tau - \tau_c)^2}$$

where

$$\tau_{\rm C} = 57.5 \Delta \tau$$

This gives a pulse with a maximum amplitude of one-half degree with a smooth transition from a steady-state condition to the pulse. The calculation

is carried out for a total of 1024 time steps to assure a return of the flow field to the steady-state condition.

Fast Fourier transforms (FFTs) of the lift coefficient, the moment coefficient about the quarter-chord, and the angle of attack time histories are then calculated. The lift and moment coefficient FFTs are divided by the α FFT to obtain the frequency response functions for $c_{\ell\alpha}$ and c_{m_α} as shown in Fig. 1. For most cases the unsteady lift and moment show the same grid characteristics, and only the calculated lift is shown. The pulse was designed to have sufficient magnitude to obtain reasonable results for frequencies up to k=2.0. The use of the pulse and transfer function technique gives considerable detail in the frequency domain with a significant reduction in cost over calculating discrete oscillations.

The linear analysis is performed for a flat plate at $M_{\infty}=0.850$, $\Delta\tau=\pi/12.80$, $\alpha_0=0$. rad. and $V_{\infty}/c=100.0$. The resulting forces are compared to the exact forces calculated by a two-dimensional subsonic kernel function aerodynamics program described in ref. 28. The comparison gives an excellent indication of the effect of the grid for a wide range of reduced frequencies. The analysis is also performed on a 6% thick parabolic arc airfoil at the same conditions as the flat plate to demonstrate the non-linear transonic effects. For lifting conditions, the steady-state and unsteady algorithms converge to slightly different solutions, so before the pulse is applied the airfoil is held fixed and the unsteady solution is calculated for 1024 time steps to obtain a consistent initial condition. This ensures that the lift and moment after the pulse return to the initial values and eliminates low frequency errors which might be introduced in the FFT results.

Grids Analyzed

Five computational grids are evaluated using the pulse-transfer function technique. Three are the default grids from currently used TSP finite difference programs; the LTRAN2-NLR program, 14 the LTRAN2-HI program, 15 and the x,z grid of the XTRAN3S program. 23 In addition, two grids designed to improve the accuracy of the calculated forces are analyzed.

The default grid of the LTRAN2-NLR program consists of 99 x 79 points in x,z, and the grid coordinates for the flat plate case are listed in Table 1. Figure 2 illustrates the LTRAN2-NLR grid in the region around the flat plate with a typical airfoil drawn to illustrate the airfoil location. The physical grid for the flat plate case extends from -1034c to 856c in x and $\mp 3860c$ in z with 33 grid points on the airfoil. Since the far-field boundary conditions of the LTRAN2-NLR program are reflecting, the physical mesh extent is several thousand chordlengths in both directions. The TSP equation is solved in a transformed coordinate system, so the physical grid is mapped into computational coordinates. In LTRAN2-NLR the computational space ξ ,n grid is identical for all cases and related to the physical x,z grid by

$$x = \frac{\xi}{z} = \frac{\eta}{\left\{\delta M_{\infty}^{2}(\gamma + 1)\right\}^{1/3}}$$

The physical x grid is fixed and the z grid varies with Mach number, thickness ratio, and ratio of specific heats. For the flat plate airfoil a value of $\delta = 0.005$ is used.

TABLE 1. LTRAN2-NLR DEFAULT GRID FOR M_{∞} = 0.850, δ = 0.005

INDEX	×	z
1	-1033.53047	-3860.13477
2	-749.90681	-2503.05607
3	-544.02252	-1649.54460
4	-394.58328	-1112.74704
5	-286.12668	-775.13626
6	-207.42501	-562.80681
7	-150.32551	-429.26193
8	-108.90823	-335.50205
9	-78.87451	-262.01548
10	-57.10299	-204.43719
11	-41.32715	-159.34467
12	-29.90121	-124.04846
13	-21.63011	-96.43506
14	-15.64610	-74.85272
15	-11.31906	-57.99242
16	-8.19147	-44.84499
17	-5.93108	-34.60124
18	-4.29666	-26.62805
19	-3.11304	-20.44467
20	-2.25301	-15.64648
21	-1.62421	-11.94312
22	-1.15958	-9.08705
23	81673	-6.89740
24	56674	-5.21708
25	38898	-3.94327
26	26502	-2.97364
27	17974	-2.24154
28	12149	-1.69079
29	08171	-1.27761
30	05433	96725
31	03517	73306
32	02142	55312
33	01123	41080
34 25	00330	29403
35 36	.00330	19140
36	.00929	11662
37 38	.01534	06997
38 39	.02204	04046
39 40	.03003 .03998	01571
40	.03998	0.00000
42	.05260	.01571
43	.08916	.06997
44	.11478	.11662
45	.14619	.19140
46	.18359	.29403
	-1000	• 2./403

TABLE 1. - CONTINUED

INDEX	х	Z
47	.22663	.41080
48	.27436	.55312
49	.32552	.73306
50	.37877	.96725
51	.43295	1.27761
52	.48720	1.69079
53	.54078	2.24154
54	.59298	2.97364
55	.64314	3.94327
56	.69075	5.21708
57	.73559	6.89740
58	.77770	9.08705
59	.81705	11.94312
60	.85334	15.64648
61	.88595	20.44467
62	.91425	26.62805
63	.93798	34.60124
64	.95746	44.84499
65	.97351	57.99242
66	.98726	74.85272
67	1.00000	96.43506
68	1.01306	124.04846
69	1.02785	159.34467
70	1.04593	204.43719
71	1.06923	262.01548
72	1.10047	335.50205
73	1.14381	429.26193
74	1.20541	562.80681
75	1.29376	775.13626
76	1.41949	1112.74704
77	1.59483	1649.54460
78	1.83264	2503.05607
79	2.15087	3860.13477
80	2.58083	
81	3.17250	1
82	3.99545	1
83	5.14646	i
84	6.76021	
85	9.02411	ļ
86	12.19890	· .
87	16.64743	İ
88 89	22.87456	1
90	31.58279	
90 91	43.74965	ł
91	60.73530	
92	84.43235 117.47431	
	11/.4/431	i

TABLE 1. - CONTINUED

INDEX	×	Z
94 95 96 97 98 99	163.52559 227.68509 317.04773 441.48577 614.73612 855.91313	:

The LTRAN2-HI default grid consists of 113 x 97 points in the x,z plane and is listed in Table 2 and illustrated in Fig. 3. For the flat plate case the physical extent of the grid is $\mp 200c$ in x and $\mp 2327c$ in z with 48 grid points on the airfoil. The far-field boundary conditions in the program are also reflecting so the physical extent is quite large. The computational ξ ,n grid in LTRAN2-HI is related to physical x,z space by

$$x = \xi$$

$$z = \frac{\eta}{\sqrt{1/3}}$$

The x grid is again fixed while the z grid depends only upon the thickness ratio.

TABLE 2. LTRAN2-HI DEFAULT GRID FOR $\delta = 0.005$

INDEX	×	Z
1	-200.00000	-2326.50510
2	-132.08390	-1694.05485
3	-87.24290	-1240.86615
4	-57.65660	-914.37169
5	-38.15274	-677.87267
6	-25.31051	-505.62532
7	-16.86743	-379.48372
8	-11.32718	-286.59564
9	-7.70010	-217.81429
10	-5.33166	-166.59850
11	-3.78896	-128.24781
12	-2.78570	-99.36814
13	-2.13252	-77.49680
14	-1.70418	-60.83830
15	-1.41785	-48.07719
16	-1.21875	-38.24505
17	-1.07500	-30.62553

TABLE 2. - CONTINUED.

INDEX	х	Z	
18	95000	-24.68612	
19	82500	-20.02908	
20	70000	-16.35590	
21	57500	-13.44147	
22	45625	-11.11518	
23	35000	-9.24715	
24	25625	-7.73799	
25	18125	-6.51133	
26	12500	-5.50815	
27	08188	-4.68267	
28	05375	-3.99918	
29	03625	-3.42973	
30	02375	-2.95229	
31	01500	-2.54946	
32 33	00813	-2.20742	
33	00250	-1.91512	
35	.00250	-1.66372	
36	.01250	-1.44609	
37	.01750	-1.25646	
38	.02250	-1.09014	
39	.02750	94330 81278	
40	.03250	69600	
41	.03813	59080	
42	.04563	49539	
43	.05500	40827	
44	.06500	32815	
45	.07500	25398	
46	.08563	18482	
47	.09875	11988	
48	.11703	05848	
49	.14204	0.00000	
50	.17188	.05848	
51	.20313	.11988	
52	.23438	.18482	
53	.26563	.25398	
54	.29688	.32815	
55	.32813	.40827	
56 57	.35938	•49539	
57 58	.39063	.59080	
58 59	.42188	.69600	
60	.45313 .48438	.81278	
61	.51563	.94330 1.09014	
62	.54688	1.09014	
63	.57813	1.44609	
64	.60938	1.66372	
65	.64063	1.91512	
	70100	2.71716	

TABLE 2. - CONTINUED

Table	-	INDEX	1	
67	L	Y	×	Z
68				2.20742
69 .76563 3.42973 70 .79688 3.99918 71 .82813 4.68267 72 .85797 5.50815 73 .88235 6.51133 74 .90000 7.73799 75 .91500 9.24715 76 .93000 11.11518 77 .94500 13.44147 78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93	1			2.54946
70	ł			
71	1			
72 .85797 5.50815 73 .88235 6.51133 74 .90000 7.73799 75 .91500 9.24715 76 .93000 11.11518 77 .94500 13.44147 78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 10				
73 .88235 6.51133 74 .90000 7.73799 75 .91500 9.24715 76 .93000 11.11518 77 .94500 13.44147 78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 105 16.56481 102 8.39662			I I	9
74 .90000 7.73799 75 .91500 9.24715 76 .93000 11.11518 77 .94500 13.44147 78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 105 2.92056	1			
75 76 93000 77 78 94500 13.44147 78 96000 16.35590 79 97500 20.02908 80 98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 297 2.92056 98 3.46671 99 4.20744 100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347	1			1
76 .93000 11.11518 77 .94500 13.44147 78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671				
77			1	1
78 .96000 16.35590 79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 99 4.20744 100 5.20975 101 6.56481	1		•	
79 .97500 20.02908 80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 3.3662 101 6.56481 102 102 8.39662 103 103 10.87389 104 104 14.22615 105 18.	1			•
80 .98875 24.68612 81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 33.46671 99 4.20744 100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700	1			1
81 1.00000 30.62553 82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 33.46671 99 4.20744 100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 <td></td> <td>80</td> <td>l .</td> <td></td>		80	l .	
82 1.01125 38.24505 83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 33.46671 99 4.20744 100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110		81	1	
83 1.02750 48.07719 84 1.05375 60.83830 85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 1694.05485 2326.50510 98 3.46671 399 4.20744 100 5.20975 101 6.56481 102 102 8.39662 2103 103 10.87389 104 104 14.22615 105 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 109.14088 111 109.14088 112 1			1.01125	
85 1.09500 77.49680 86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 399 4.20744 100 5.20975 101 6.56481 102 103 10.87389 104 104 14.22615 105 105 18.76560 106 107 33.25817 108 109 59.93742 10 110 80.79963 11 111 109.14088 11 112 147.65347	1		1.02750	
86 1.15375 99.36814 87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 399 4.20744 100 5.20975 101 6.56481 102 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347	1		1	60.83830
87 1.22500 128.24781 88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 399 4.20744 100 5.20975 101 6.56481 102 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				77.49680
88 1.30625 166.59850 89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 3.46671 99 4.20744 100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347			1	
89 1.40000 217.81429 90 1.50625 286.59564 91 1.62500 379.48372 92 1.75000 505.62532 93 1.87500 677.87267 94 2.01875 914.37169 95 2.22799 1240.86615 96 2.51972 1694.05485 97 2.92056 2326.50510 98 3.46671 3.46671 99 4.20744 3.39662 101 6.56481 3.39662 103 10.87389 3.4671 104 14.22615 3.25817 105 18.76560 3.25817 108 44.57519 3.79963 111 109.14088 3.47.65347				
90	1		· I	l i
91	ł			
92	ł			
93	l	-		
94	1			
95	1	94	l .	
96	1	95	i	
98			2.51972	
99	İ			2326.50510
100 5.20975 101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347	l			
101 6.56481 102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347	Ι,			
102 8.39662 103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				
103 10.87389 104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				
104 14.22615 105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347	ł		_	
105 18.76560 106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				
106 24.91700 107 33.25817 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				
107 108 44.57519 109 59.93742 110 80.79963 111 109.14088 112 147.65347				
109 59.93742 110 80.79963 111 109.14088 112 147.65347			33.25817	
110 80.79963 111 109.14088 112 147.65347	L.			
111 109.14088 112 147.65347			59.93742	· ·
112 147.65347				
				ľ
112 500.00000				
	1	.12	200.00000	

The grid implemented in XTRAN2L is designed to improve the accuracy of the calculated forces for two-dimensional flow problems. It is 80 x 61 points in x,z and is listed in Table 3 and shown in Fig. 4. The physical grid extends $\mp 20c$ in x and $\mp 25c$ in z with 51 grid points lying on the airfoil. The physical extent of the grid is fixed and is related to the computational grid in XTRAN2L by

$$x = \xi$$

$$z = \frac{\eta}{\left\{\delta M_{\infty}^{2}(\gamma^{*}+1)\right\}^{1/3}}$$

The computational ξ grid is fixed for all problems while the n grid will vary depending upon M_{∞} , δ , and γ^* . The XTRAN2L grid takes advantage of the far-field radiation boundary conditions incorporated in the program by reducing the physical extent covered. Reducing the area covered by the grid allows the number of points in the grid to be decreased, permits the inclusion of more grid points on the airfoil, and reduces the computational cost. The XTRAN2L grid consists of a smooth stretching in z and in x upstream and downstream of the airfoil.

On the airfoil, the LTRAN2-NLR and LTRAN2-HI programs concentrate grid points near the leading and trailing edges because of rapid changes in pressure near the airfoil edges. The grid spacing on the airfoil is maximum near the middle of the airfoil. Yet the change in pressure across a shock is of the same magnitude as the change in pressure near the airfoil edges so the grid spacing around the shock should also be fine. Unfortunately, the shock very likely will occur in the region where both grids have relatively large grid spacing, causing reduced shock resolution.

Since the pressure gradient across a shock may be greater than that near the trailing edge, the XTRAN2L grid has no special concentration of points near the airfoil trailing edge. The XTRAN2L grid points on the airfoil were equally spaced to allow a better shock definition for any position and transient motion. Keyfitz, Melnick and Grossman²⁰ show that the grid spacing near a blunt leading edge is important in TSP codes and the best results may be obtained for a medium mesh spacing. Thus no fine grid spacing is used near the leading edge but a grid point was added near the nose to aid in defining a blunt airfoil.

TABLE 3. XTRAN2L DEFAULT GRID

(

INDEX	×	Z
1	-20.00000	-25.00000
2	-16.30961	-23.36111
3	-13.10054	-21.77778
4	-10.33987	-20.25000
5	-7.99453	-18.77778
6	-6.03136	-17.36111
7	-4.41705	-16.00000

TABLE 3. CONTINUED

71057			
INDEX	X	Z	
8	-3.11817	-14.69444	
9	-2.10110	-13.44444	
10	-1.33204	-12.25000	
11	77699	-11.11111	
12	40170	-10.02778	
13	17160	-9.00000	
14	05175	-8.02778	
15	00667	-7.11111	
16	.00667	-6.25000	
17	.02000	-5.44444	
18	.04000	-4.69444	
19	.06000	-4.00000	
20	.08000	-3.36111	
21	.10000	-2.77778	
22	.12000	-2.25000	
23	.14000	-1.77778	
24	.16000	-1.36111	
25	.18000	-1.00000	
26	.20000	69444	
27	.22000	44444	
28	.24000	25000	
1 1			
29	.26000	11111	
30	.28000	02778	
31	.30000	0.00000	
32	.32000	.02778	
33	.34000	.11111	
34	.36000	.25000	
35	.38000	.44444	
36	.40000	.69444	
37	.42000	1.00000	
38	.44000	1.36111	
39	.46000	1.77778	
40	.48000	2.25000	
41	.50000	2.77778	
42	.52000	3.36111	
43	.54000	4.00000	
44	.56000	4.69444	
45	.58000	5.44444	
46	.60000	6.25000	
47	.62000	7.11111	
48	.64000	8.02778	
49	.66000	9.00000	
50	.68000	10.02778	
51	.70000	11.11111	
52	.72000	12.25000	
53	.74000	13.44444	
54	.76000	14.69444	
55	.78000	16.00000	
56	.80000	17.36111	

TABLE 3. CONTINUED

INDEX	х	Z
57	.82000	18.77778
58	.84000	20.25000
59	.86000	21.77778
60	.88000	23.36111
61	.90000	25.00000
62	.92000	
63	•94000	
64	.96000	
65	.98000	
66	1.00000	
67	1.02000	
68	1.12274	
69	1.35473	
70	1.75323	:
71	2.35080	
72	3.17695	
73	4.25898	
74	5.62249	
75	7.29170	
76	9.28970	
77	11.63860	
78	14.35968	
79	17.47352	
80	21.00000	

The XTRAN3S program is a 3-dimensional TSP finite difference code. For analysis with the XTRAN2L program the default x,z grid defined at the root chord is studied. The grid coordinates are listed in Table 4 and the near-field grid is shown in Fig. 5. The physical extent of the grid is from -15c to 27c in x and $\mp 13c$ in z with 39 grid points on the airfoil. The XTRAN3S program has reflecting far-field boundary conditions and the grid is limited to 60×40 points in the x,z plane. This limitation results in the boundaries being defined very close to the airfoil as compared to the previously described grids. The physical grid is invariant and related to the XTRAN3S computational grid by

$$x-x_{LE} = \xi$$
 $z = \eta$

where x_{LE} is the leading edge location (=0 at root chord). The computational and physical grids at the root chord are identical and are problem independent. For analysis with XTRAN2L a grid row at z=0 was added to the XTRAN3S default z grid because the XTRAN3L program requires a grid row at z=0 while the XTRAN3S program does not.

TABLE 4. XTRAN3S DEFAULT GRID

TNDEV	 	<u> </u>
INDEX	×	Z
1	-15.37500	-13.03750
2	-7.69250	-6.63750
1 2 3 4	-3.85000	-3.43750
4	-1.92750	-1.83750
5 6	96500	-1.03750
6	48250	63750
7	24000	43750
8	11750	33750
9	05500	28750
10	02250	26250
11	00500	23750
12	.00500	21250
13	.01500	18750
14	.02500	16250
15	.03500	13750
16	.04500	11250
17	.06000	08750
18	.08000	06250
19	.10000	03750
20	.13000	01250
21	.16000	0.00000
22	.19000	.01250
23	.22000	.03750
24	.25000	.06250
25	.28000	.08750
26	.31000	.11250
27	.34000	.13750
28	.37000	.16250
29	.40000	.18750
30	.43000	.21250
31	.46000	.23750
32	.49000	.26250
33 34	.52000	.28750
	.55000	.33750
35 36	.58000 .61000	.43750 .63750
30 37	.64000	1.03750
38	.67000	1.83750
39	.70000	3.43750
40	.73000	6.63750
41	.76000 .76000	13.03750
42	.79000	13.03/30
43	.82000	
44	.85000	
45	.88000	
46	.91000	
47	.93500	
48	.96000	
49	.98000	
	75500	{

TABLE 4. - CONTINUED

INDEX	х	Z
50	1.00000	
51	1.02500	
52	1.07500	
53	1.17500	
54	1.37500	
55	1.77500	
56	2.57500	
57	4.17500	
58	7.37500	
59	13.77500	
60	26.57500	
L	l	l <u> </u>

A revised XTRAN3S x,z grid was designed to improve the accuracy of the calculated forces and is listed in Table 5 and shown in Fig. 6. The physical extent of the grid is $\mp 20c$ in x and $\mp 25c$ in z with 39 points lying on the airfoil. The grid also is problem-independent and has a z=0 grid line added for the two-dimensional analysis. The grid was optimized for the available size of 60 x 40 points in the x,z plane. To minimize the reflections from the z boundary, the extent covered by the z grid is increased to $\mp 25c$ chordlengths. A smooth stretching is used in z and in x upstream and downstream of the airfoil. The points on the airfoil are equi-spaced with an additional point near the leading edge for better nose definition.

TABLE 5. REVISED XTRAN3S GRID

INDEX	х	Z	
1	-20.00000	-25.00000	
2	-14.70824	-22.50164	
3	-10.47170	-20.13478	
4	-7.16272	-17.89941	
5	-4.65677	-15.79553	
6	-2.83281	-13.82314	
7	-1.57362	-11.98225	
8	76633	-10.27285	
9	30308	-8.69494	
10	08199	-7.24852	
11	00877	-5.93360	
12	.00877	-4.75016	
13	.02632	-3.69822	
14	.05263	-2.77778	
15	.07895	-1.98882	
16	.10526	-1.33136	
17	.13158	80539	
18	.15789	41091	
19	.18421	14793	
20	.21053	01644	
21	.23684	0.00000	

TABLE 5. - CONTINUED.

INDEX		1
TUDEY	×	Z
22	.26316	.01644
23	.28947	.14793
24	.31579	.41091
25	.34211	.80539
26	.36842	1.33136
27	.39474	1.98882
28	.42105	2.77778
29	.44737	3.69822
30	.47368	4.75016
31	.50000	5.93360
32	.52632	7.24852
33	.55263	8.69494
34	.57895	10.27285
35	.60526	11.98225
36	.63158	13.82314
37	.65789	15.79553
38	.68421	17.89941
39	.71053	20.13478
40	.73684	22.50164
41	.76316	25.00000
42	.78947	
44	.84211	,
45	.86842	
46	.89474	
47	.92105	
48	.94737	
49	.97368	
50	1.00000	
51	1.02632	
52	1.19383	
53	1.62332	l
54	2.42771	ľ
55	3.71531	
56	5.59119	
57 50	8.15791	
58 50	11.51599	
59 60	15.76424	
60	21.00000	

RESULTS AND DISCUSSION

Linear Flat Plate Analysis

LTRAN2-NLR GRID

The first grid analyzed using the pulse-transfer function technique is the LTRAN2-NLR grid. The grid was analyzed using the reflecting far-field boundary conditions used in the LTRAN2-NLR program. Figure 7 presents $c\ell_{\alpha}$ versus reduced frequency for this grid at M $_{\infty}$ = 0.850 and for the corresponding exact values obtained from a kernel function solution. In

addition to obtaining the unsteady forces for the complete TSP equation on this grid, the unsteady forces are also calculated for the low frequency equation and boundary conditions 14 and are included to show the effect of adding the time derivative terms to the equations.

Both finite difference solutions exhibit spurious oscillations in the calculated unsteady forces. The complete equation solution exhibits slightly larger oscillations than the low frequency results. The low frequency deviates from the complete and exact solutions for reduced frequencies greater than 0.075. Several modifications of the grid were conducted to determine the cause of this oscillation. The resulting unsteady forces are very insensitive to the x grid extent and spacing off of the airfoil while the z grid extent and spacing are very critical. physical time span covered in the flat plate cases, the maximum distance from which disturbances can be reflected back to the airfoil is 41c in x and 77c in The x grid boundaries were moved to within 4 chordlengths of the airfoil before any noticeable change occured in the unsteady forces, while changes were noticeable when the z boundaries came within 75 chordlengths of the airfoil.

The oscillations are due to internal numerical reflections in the grid caused by stretching too rapidly in the z direction and were traced to the grid spacing at approximately 9 chordlengths from the airfoil. The disturbances from the airfoil due to the pulse are unable to propagate accurately between the grid points which are approximately 2 chordlengths apart and are partially reflected back to the airfoil. The reflected disturbances cause oscillations in the force time histories as shown in Fig. 1 and result in the oscillations in the force frequency response functions. Adding the time derivative terms by going from the low frequency to the complete equation causes the oscillations to increase in magnitude.

As the reduced frequency increases, the LTRAN2-NLR forces begin to deviate from the exact values. This is not due to the grid but is caused by using too large a time step. The calculated forces can be brought into closer agreement with the kernel function values at the higher reduced frequencies by decreasing the time step. To maintain accuracy at the low reduced frequencies, the number of steps should be increased such that the total time the solution spans remains constant. The phenomenon of decreasing agreement with the exact kernel function values for increasing reduced frequency for the pulse-generated forces occurs for all cases in this paper since they all were run for the identical number of time steps and total time.

LTRAN2-HI

Results from the LTRAN2-HI grid analyzed using reflecting far-field boundary conditions are shown in Fig. 8. This grid is very similar to the LTRAN2-NLR grid and shows the same oscillations in unsteady forces. Internal grid reflections affect the forces for reduced frequencies above 0.20. The magnitude and extent of the oscillations in the forces are not as severe for the LTRAN2-HI grid as for the LTRAN2-NLR grid. This is due to the slightly finer spacing of the LTRAN2-HI grid around 9 chordlengths away in z than that found in the LTRAN2-NLR grid.

XTRAN2L Grid

The results for the XTRAN2L grid are shown in Figs. 9 and 10. In order to see the effect of the radiation boundary conditions, the grid was first analyzed with the reflecting far-field boundary conditions used for the LTRAN2-NLR and LTRAN2-HI grids (Fig. 9). The calculated forces agree quite well with the kernel function values except for the oscillations near k=0.08. These oscillations are due to reflections of disturbance from the z boundary at ∓ 25 chordlengths from the wing. Including the radiation far-field boundary conditions alleviates the oscillations as shown in Fig. 10.

In addition to giving more accurate forces, the XTRAN2L grid gives a considerable savings in computational cost due to the fewer number of grid points used. The computer time required to calculate forces using this grid is 34% less than the time taken for the LTRAN2-NLR grid and 53% less than that for the LTRAN2-HI grid. The program size is also reduced by 15% and 28% as compared to LTRAN2-NLR and LTRAN2-HI programs respectively.

XTRAN3S Default Grid

The forces calculated for the default XTRAN3S root chord x,z grid using reflecting far-field boundary conditions are shown in Fig. 11. Very poor agreement with the exact values is exhibited. The XTRAN3S grid exhibits both internal and boundary reflections. For k < 0.3 the oscillations are due to reflections from the z boundary and for k > 0.3 are caused by internal grid reflections from approximately 3 chordlengths above and below the airfoil.

XTRAN3S Revised Grid

The results for the revised XTRAN3S root chord x,z grid using reflecting far-field boundary conditions are shown in Fig. 12. The revised grid exhibits much better agreement with the exact values than the original grid. The amplitude and frequency of the boundary reflections are decreased due to the larger extent of the grid in z. The effects of internal grid reflections are eliminated for k < 0.50 and minimized for k > 0.50. Neither the boundary nor the internal reflections can be eliminated completely due to the program size restrictions and reflecting boundary conditions. The results represent a compromise grid designed to optimize accuracy for k < 0.50, which is the range of interest for flutter analysis.

6% Parabolic Arc Analysis

To investigate non-linear transonic effects, calculations were made for a six percent thick parabolic arc airfoil using the LTRAN2-NLR, LTRAN2-HI, and The LTRAN2-NLR and LTRAN2-HI grids were analyzed using XTRAN2L grids. reflecting far-field boundary conditions while the XTRAN2L grid used the radiation boundary conditions. The forces calculated using the XTRAN2L grid To verify the accuracy of the at M_{∞} = 0.850 are shown in Fig. 13. function technique for this non-linear case. pulse-transfer oscillatory solutions were obtained for discrete reduced frequencies. Figure 13 demonstrates that the harmonic and pulse unsteady forces agree well with each other for moderate reduced frequencies and verifies that for this case, the unsteady forces may be treated as locally linear. As demonstrated in the

linear flat plate cases, the agreement becomes worse with increasing reduced frequency. The agreement can be improved by decreasing the time step for the pulse case.

The forces for the three grids are compared in Figs. 14 and 15. Figure 14 demonstrates that all three grids predict values of $c_{\ell\alpha}$ that are close to one another. The LTRAN2-NLR and LTRAN2-HI grids cause internal reflections as in the linear flat plate case. The magnitude of the oscillations for this non-linear case are smaller than for the corresponding linear cases shown in Figs. 7 and 8. The pitching moments shown in Fig. 15 also exhibit the internal reflections and, in addition, demonstrate a difference in the value of c_{m_α} between the three grids.

To illustrate the source of the difference exhibited in the values of $c_{\text{M}_{\alpha}}$, the steady-state pressure distributions of the airfoil for each grid are shown in Fig. 16. As the grid spacing on the airfoil becomes finer, the shock definition becomes better and the shock strength increases. As the shock strength increases, the lift is not changed to any measureable degree but the moment increases. Grid spacing along the airfoil can thus be very important to the shock definition and hence the resulting forces.

CONCLUDING REMARKS

A pulse-transfer function method for calculating unsteady aerodynamic forces for a wide range of reduced frequencies has been implemented in an unsteady transonic small perturbation finite difference code. The forces were determined for a two-dimensional linear flat plate and compared to exact theoretical values to evaluate the grid. The LTRAN2-NLR grid exhibited internal reflections which can be eliminated by improving the z stretching. The LTRAN2-HI grid was shown to be superior to the LTRAN2-NLR grid hut to still have internal reflections. The addition of far-field radiation boundary conditions for the complete equation permitted a decrease in grid size and resulted in a 34% savings in computing time while eliminating the internal reflections. The unsteady forces calculated with the XTRAN3S grid were shown to be inaccurate due to boundary and internal numerical reflections. A redesigned grid utilizing the same total number of points but spanning a larger extent and having an improved stretching in z was shown to increase the accuracy.

Calculations for a 6% thick parabolic arc airfoil demonstrated that orid problems encountered for the linear flat plate airfoil also occur for non-linear cases. The pulse-transfer function technique was shown to work for a non-linear case, indicating that the unsteady forces can be treated as locally linear. In addition, the grid spacing was shown to influence the shock definition which in turn affects the unsteady pitching moment. Finer grid spacing on the airfoil was used to adequately capture shock definition and motion.

REFERENCES

- 1. Smith, R. E., ed: Numerical Grid Generation Techniques. NASA CP-2166, 1980.
- 2. Steger, J. L. and Bailey, H. E.: Calculation of Transonic Aileron Buzz. AIAA Journal, vol. 18, no. 3, March 1980, pp. 249-255.
- 3. Magnus, R. and Yoshihara, H.: Unsteady Flows over an Airfoil. AIAA Journal, vol. 13, no. 12, Dec. 1975, pp. 1622-1628.
- Magnus, R. J.: Calculation of Some Unsteady Transonic Flows About the NACA 64A006 and 64A010 Airfoils. AFFDL-TR-77-46, U. S. Air Force, July 1977.
- 5. Chyu, W. J. and Davis, S. S.: Calculation of Unsteady Transonic Flow Over an Arbitrary Airfoil. AIAA Paper 79-1554, July 1979.
- 6. Isogai, Koji: Calculation of Unsteady Transonic Flow over Oscillating Airfoils Using the Full Potential Equation. AIAA/ASME 18th Structures, Structural Dynamics and Materials Conference, Vol. B (San Diego, California), March 1977, pp. 245-256.
- 7. Chipman, R. and Jameson, A.: Fully Conservative Numerical Solutions for Unsteady Irrotational Transonic Flow About Airfoils. AIAA Paper 79-1555, July 1979.
- 8. Chipman, R. and Jameson, A.: An Alternating-Direction-Implicit Algorithm for Unsteady Potential Flow. AIAA Paper 81-0329, 1981.
- Chang, I-Chung: Unsteady Transonic Flow Past Airfoils in Rigid Body Motion. Courant Inst. of Math Sci., NYU Res. and Dev. Rept. DOE/ER/03077-170, March 1981.
- 10. Goorjian, P. M.: Implicit Computation of Unsteady Transonic Flow Governed by the Full Potential Equation in Conservation Form. AIAA Paper 80-150, 1980.
- 11. Bennett, R. M. and Bland, S. R.: An Exploratory Study of a Finite Difference Method for Calculating Unsteady Potential Flow. NASA TM 80105, June 1979.
- 12. Ballhaus, W. F. and Goorjian, P. M.: Implicit Finite-Difference Computation of Unsteady Transonic Flows About Airfoils. AIAA Journal, vol. 15, no. 12, Dec. 1977, pp. 1728-1735.
- 13. Ballhaus, W. F. and Goorjian, P. M.: Computation of Unsteady Transonic Flows by the Indicial Method. AIAA Journal, vol. 16, no. 2, Feb. 1978, pp. 117-124.
- 14. Huizing, G. H. and van der Vooren, J.: Users Manual for LTRAN2-NLR; A Programme for the Calculation of Inviscid Transonic Flow About Thin Airfoils in Moderately Slow Unsteady Motion. Memorandum W-79-003, NLR, June 1979.

- 15. Hessenius, K. A. and Goorjian, P. M.: Validation of LTRAN2-HI by Comparison with Unsteady Transonic Experiment. AIAA Journal, vol. 20, no. 5, May 1982, pp. 731-732.
- 16. Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; and Seidel, D. A.: Time-Marching Transonic Flutter Solutions Including Angle-of-Attack Effects. AIAA Paper 82-0685, May 1982.
- 17. Yang, T. Y. and Chen, C. H.: Transonic Flutter and Response Analyses of Two 3-Degree-of-Freedom Airfoils. Journal of Aircraft, vol. 19, no. 10, Oct. 1982, pp. 875-884.
- 18. Rizzetta, D. P. and Chin, W. C.: Effect of Frequency in Unsteady Transonic Flow. AIAA Journal, vol. 17, no. 7, July 1979, pp. 779-781.
- 19. Rizzetta, D. P. and Yoshihara, H.: Computation of the Pitching Oscillation of an NACA 64A010 Airfoil in the Small Disturbance Limit. AIAA Paper 80-0128, 1980.
- 20. Isogai, K.: Numerical Study of Transonic Flutter of a Two-Dimensional Airfoil. NAL TR-617T, National Aerospace Inst., Tokyo, Japan, July 1980.
- 21. Weatherill, W. H.; Sebastian, J. D.; and Ehlers, F. E.: The Practical Application of a Finite Difference Method for Analyzing Transonic Flow over Oscillating Airfoils and Wings. NASA CR-2933, 1978.
- 22. Ehlers, F. E. and Weatherill, W. H.: A Harmonic Analysis Method for Unsteady Transonic Flow and Its Application to the Flutter of Airfoils. NASA CR-3537, May 1982.
- 23. Borland, C. J. and Rizzetta, D. P.: Nonlinear Transonic Flutter
 Analysis. AIAA Journal, vol. 20, no. 11, Nov. 1982, pp. 1606-1615.
- 24. Isogai, K.: Transonic Dip Mechanism of Flutter of a Sweptback Wing:
 Part II. AIAA Journal, vol. 19, no. 9, Sept. 1981, pp. 1240-1241.
- 25. Engquist, B. and Majda, A.: Numerical Radiation Boundary Conditions for Unsteady Transonic Flow. Journal of Computational Physics, vol. 40, 1981, pp. 91-103.
- 26. Kwak, D.: Non-reflecting Far-Field Boundary Conditions for Unsteady Transonic Flow Computation. AIAA Paper 80-1393, July 1980.
- 27. Davies, D. E. and Salmond, D. J.: Indicial Approach to Harmonic Perturbations in Transonic Flow. AIAA Journal, vol. 18, no. 8, August 1980, pp. 1012-1014.
- 28. Bland, S. R.: Development of Low-Frequency Kernel-Function Aerodynamics for Comparison with Time-Dependent Finite-Difference Methods. NASA TM-83283, May 1982.
- 29. Keyfitz, B. L.; Melnik, R. E.; and Grossman, B.: Analytic and Numerical Solutions of the Transonic Small-Distance Equation in the Vicinity of a Blunt Leading Edge. AIAA Paper 77-676, June 1977.

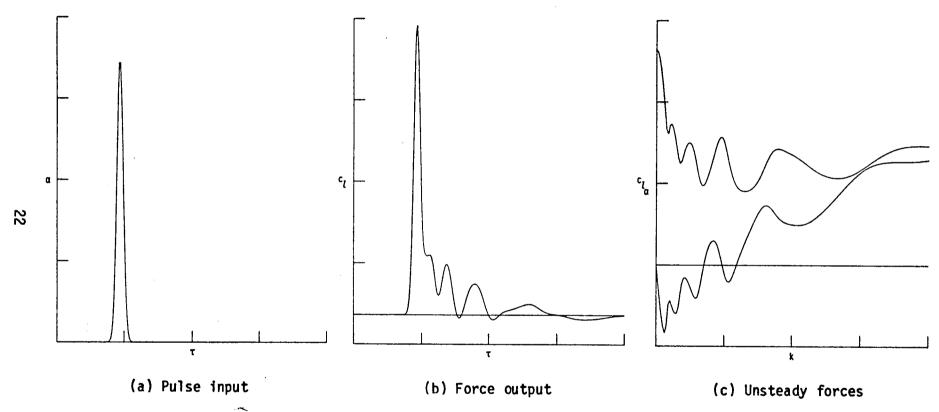


Fig. 1 Pulse-transfer function analysis for unsteady aerodynamic forces.

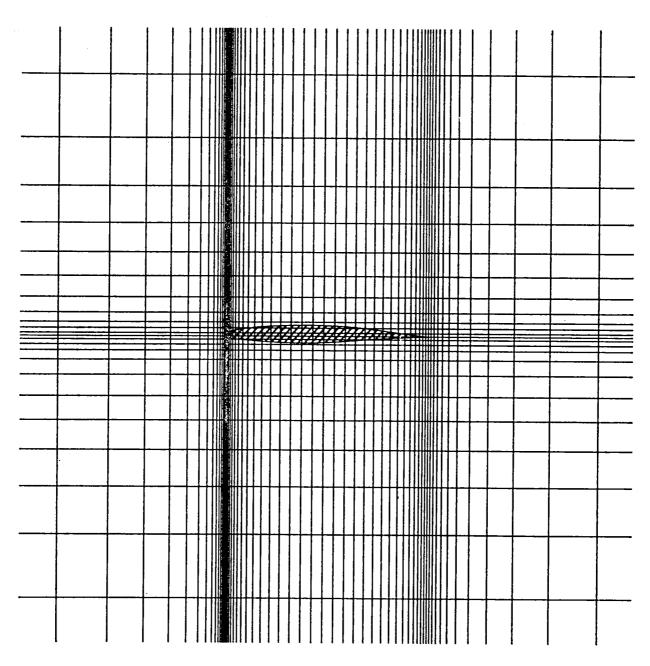


Fig. 2 LTRAN2-NLR default grid near the airfoil for M_{∞} = 0.850, δ = 0.005.

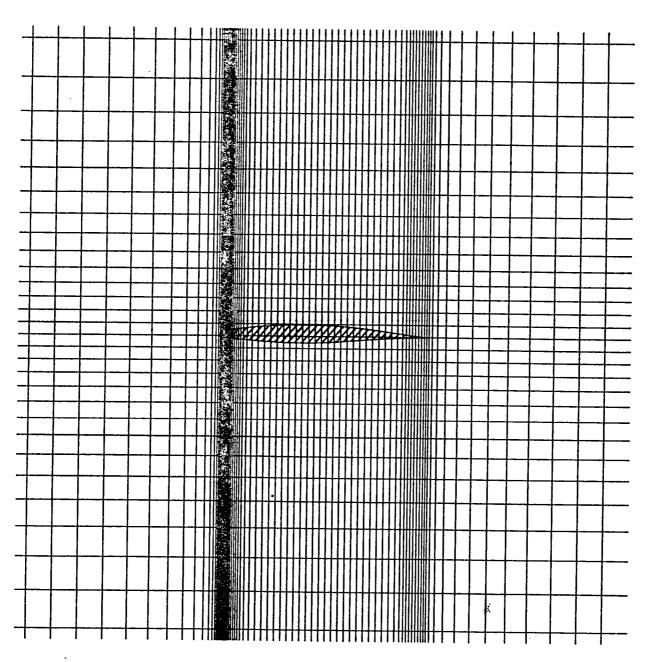


Fig. 3 LTRAN2-HI default grid near the airfoil for δ = 0.005.

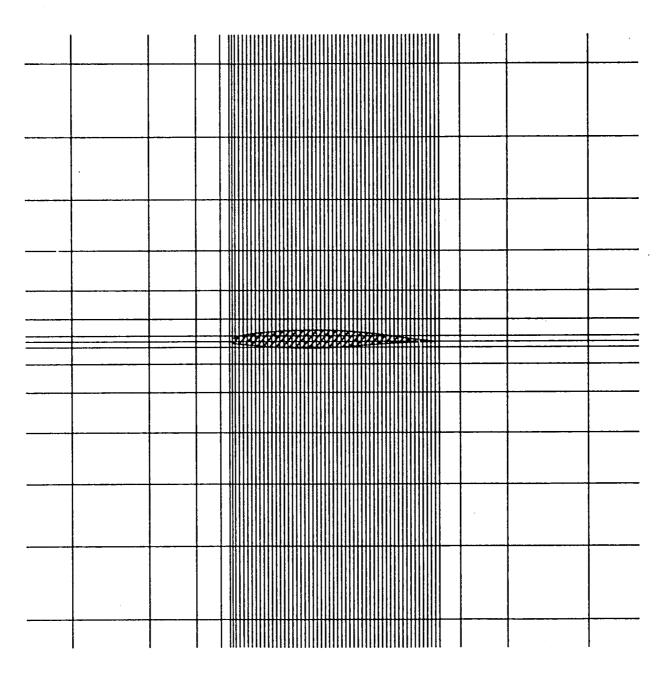


Fig. 4 XTRAN2L default grid near the airfoil.

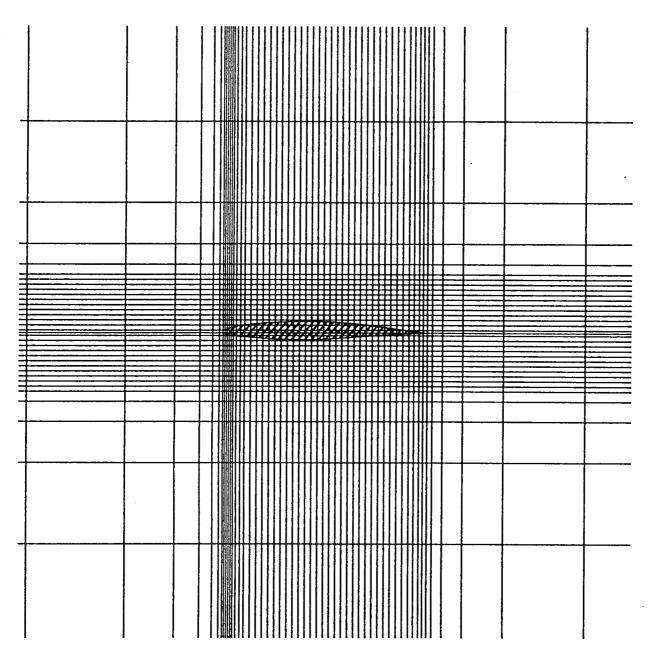


Fig. 5 XTRAN3S default root chord x,z grid near the airfoil.

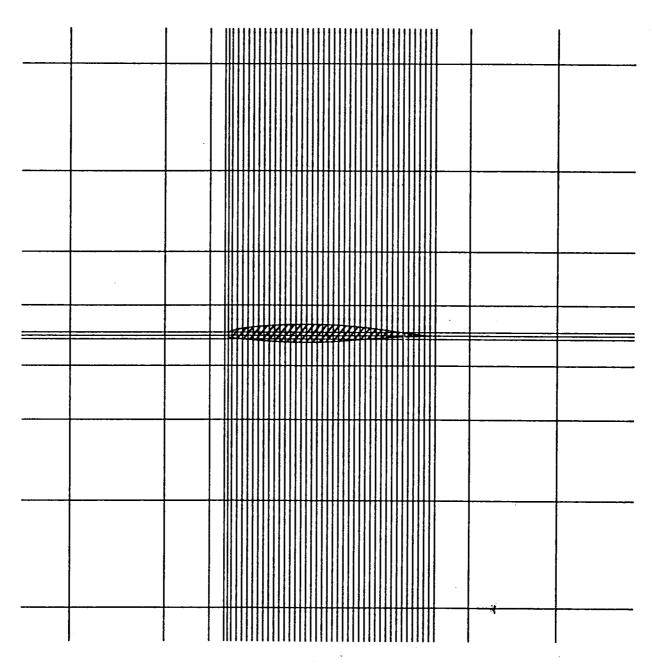


Fig. 6 Revised XTRAN3S root chord x,z grid near the airfoil.

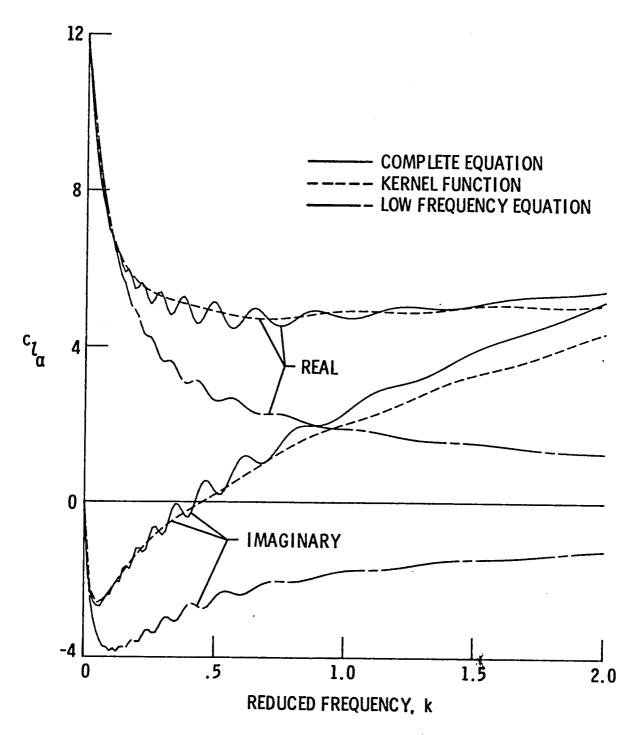


Fig. 7 Unsteady forces calculated for a flat plate airfoil using the LTRAN-NLR default grid, M_{∞} = 0.850.

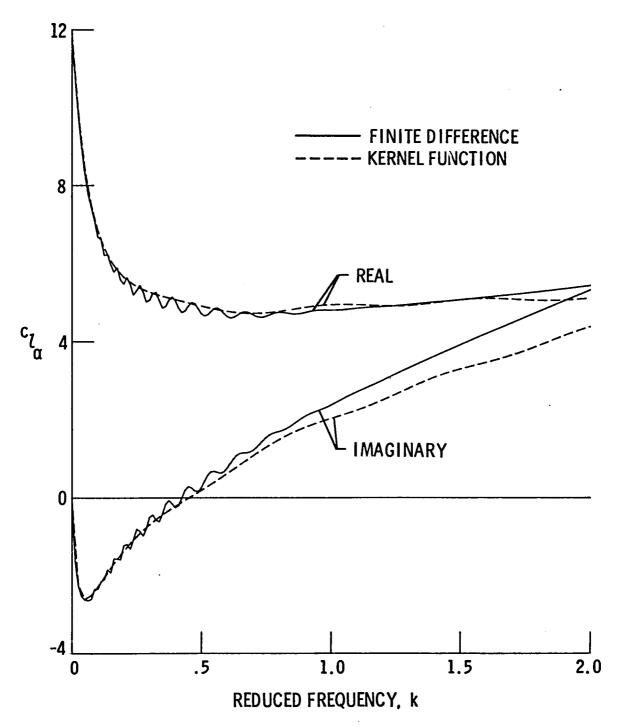


Fig. 8 Unsteady forces calculated for a flat plate airfoil using the LTRAN2-HI default grid, M_{∞} = 0.850.

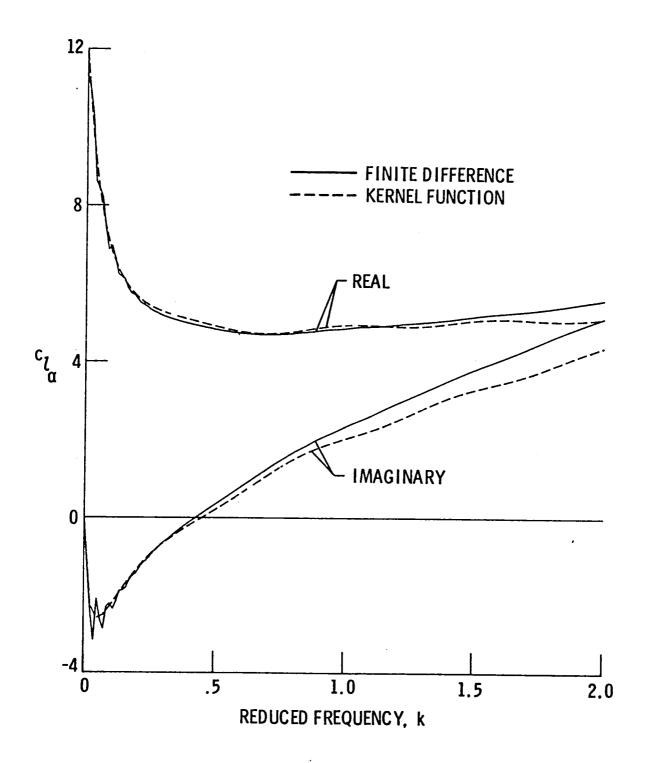


Fig. 9 Unsteady forces calculated for a flat plate airfoil using the XTRAN2L default grid with reflecting far-field boundary conditions, M_{∞} = 0.850.

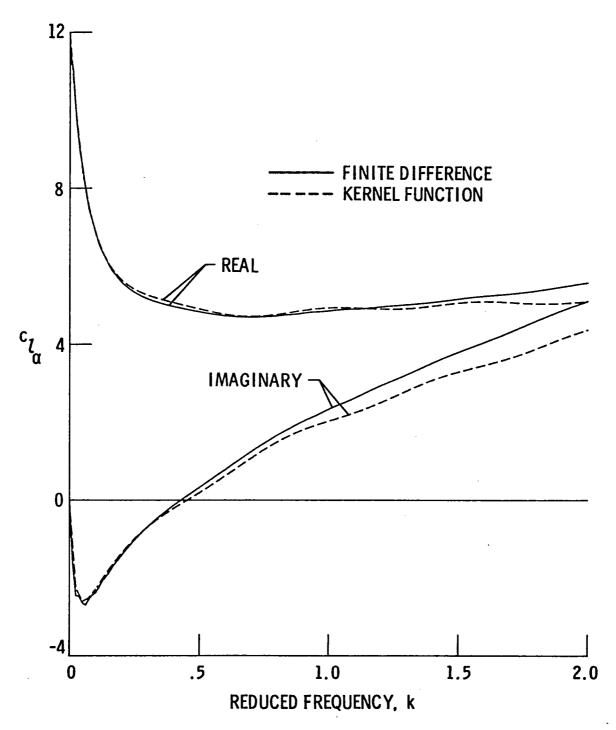


Fig. 10 Unsteady forces calculated for a flat plate airfoil using the XTRAN2L default grid with radiation far-field boundary conditions, $\rm M_{\infty}$ = 0.850.

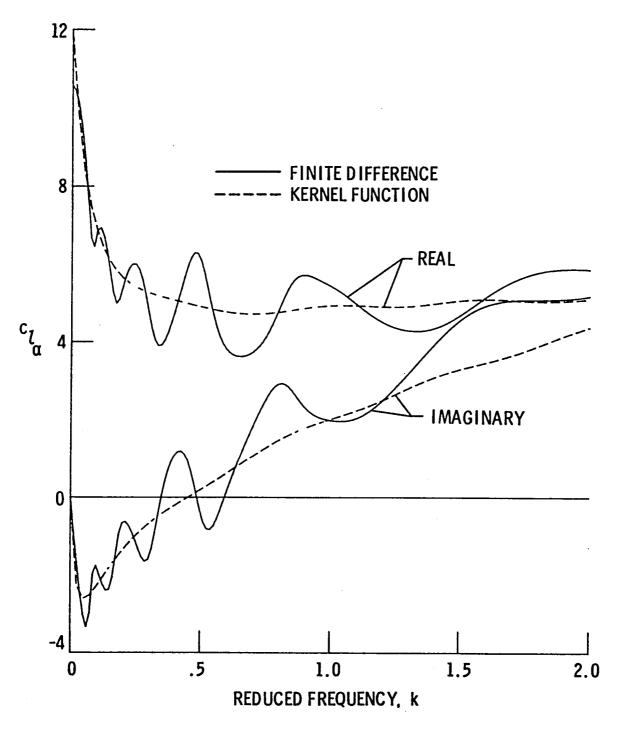


Fig. 11 Unsteady forces calculated for a flat plate airfoil using the default XTRAN3S root chord x,z grid, M_∞ = 0.850.

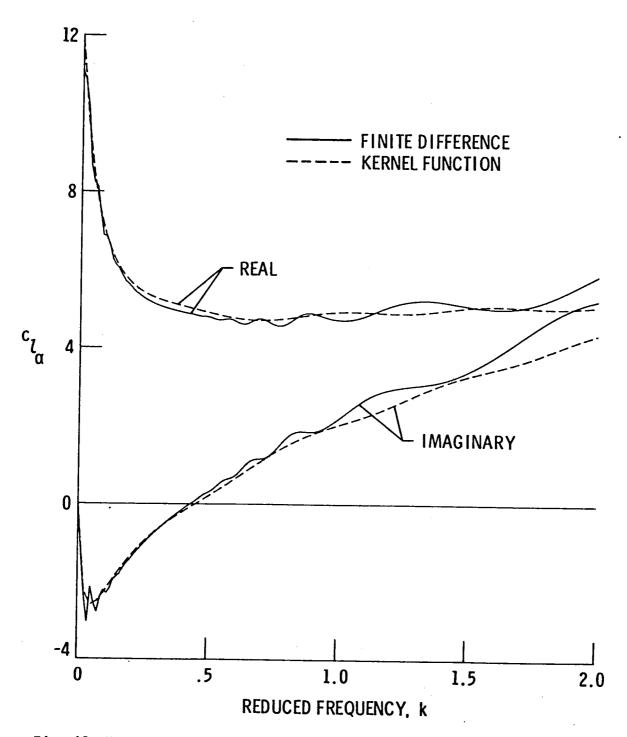


Fig. 12 Unsteady forces calculated for a flat plate airfoil using the revised XTRAN3S root chord x,z grid, M_{∞} = 0.850.

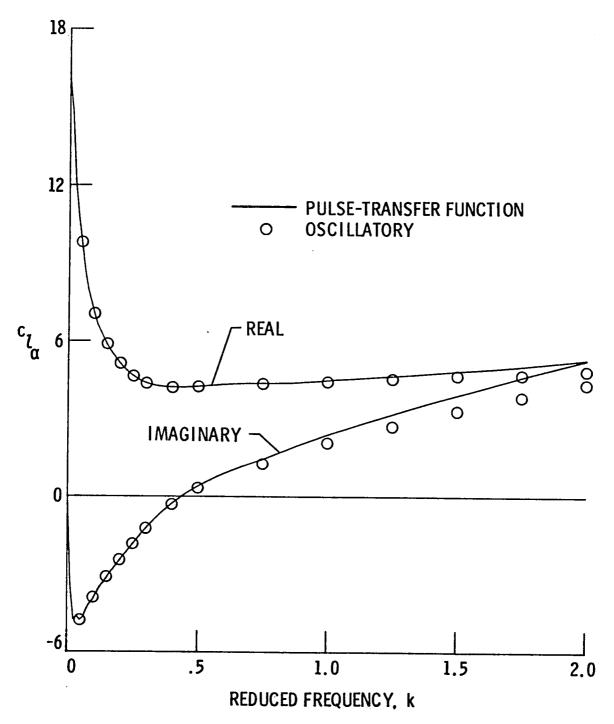


Fig. 13 Unsteady forces for a 6% parabolic arc airfoil calculated by pulse and oscillatory analyses; XTRAN2L default grid, M_{∞} = 0.850.

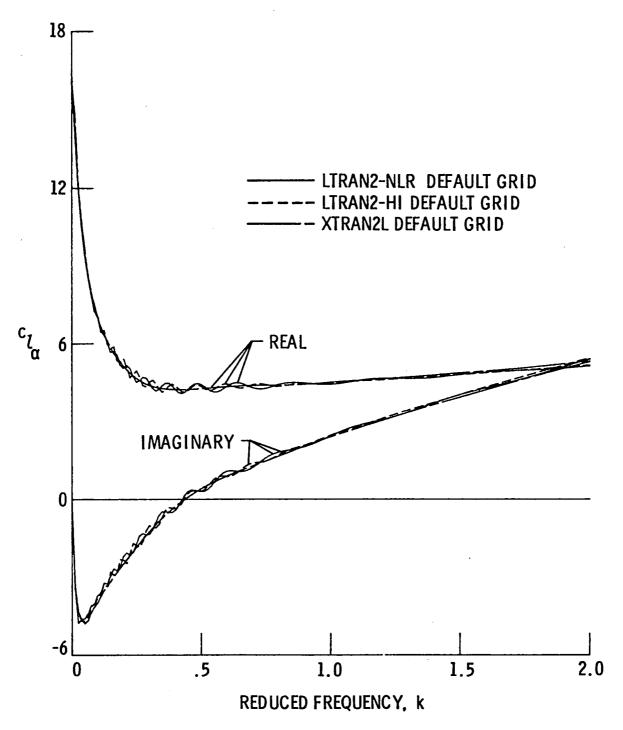


Fig. 14 $c_{\ell_{\alpha}}$ for a 6% parabolic arc airfoil calculated using the LTRAN2-NLR, LTRAN2-HI and XTRAN2L default grids, M_{∞} = 0.850.

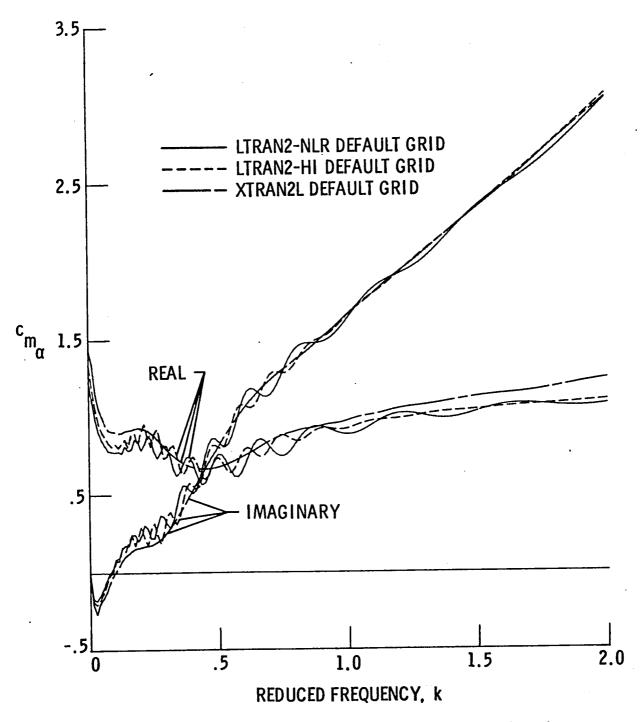


Fig. 15 $c_{m_{CL}}$ for a 6% parabolic arc airfoil calculated using the LTRAN2-NLR, LTRAN2-HI and XTRAN2L default grids, M_{∞} = 0.850.

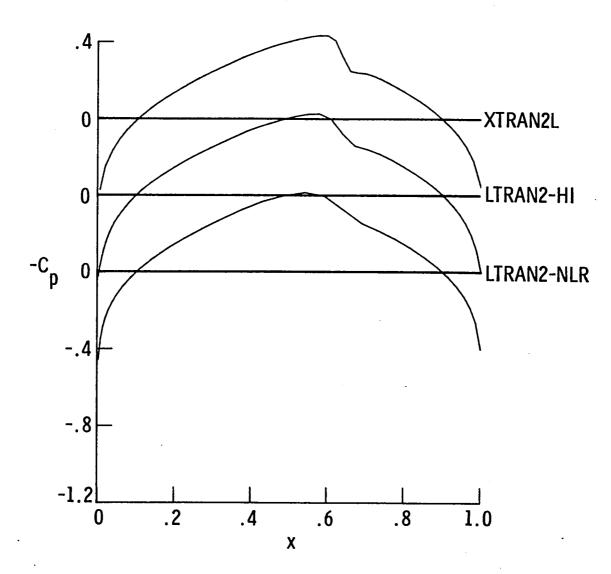


Fig. 16 Steady-state pressure distributions for a 6% parabolic arc airfoil calculated using the LTRAN2-NLR, LTRAN2-HI and XTRAN2L default grids, M_{∞} = 0.850.

Report No. NASA TM 84583 2. Government Accession No.			3. Recipient's Catalog No.		
4. Title and Subtitle An Exploratory Study of Finite Difference Grids for			5. Report Date December 1982		
Transonic Unsteady Aerodyn	amics		6. Performing Organization Code 505-33-43-09		
7. Author(s)	Donnakt and Harden 1		8. Performing Organization Report No.		
David A. Seidel, Robert M. Bennett, and Woodrow Whitlow, Jr			O. Work Unit No.		
9. Performing Organization Name and Address					
NASA Langley Research Center Hampton, VA 23665			1. Contract or Grant No.		
6	N Comments	1	3. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address			Technical Memorandum		
National Aeronautics and Space Administration Washington, DC 20546			14. Sponsoring Agency Code		
of this paper will be presonevada, January 10-13, 1983	ented at the 21st AIAA	Aerospace S 0503	ciences Meeting, Reno,		
difference program which sonic small perturbation pulse-transfer function to locally-linear fashion abolinear flat plate using to XTRAN3S programs. The for flat plate, and grid-gene observed to cause significated that alleviate the fifty-three percent and presented for a six perce the transform technique me flows.	equation. The unsteady echnique which assumes out a mean condition. he default grids from trees are compared to the rated boundary and intecant errors in the unstantial reflections while redured thick parabolic arc	forces are the flow fi Forces are he LTRAN2-Ne exact the rnal numeri eady airloacing computy-eight per airfoil whi	obtained using a eld behaves in a calculated for a LR, LTRAN2-HI, and oretical values for cal reflections are ds. Grids are pre- ational time up to cent. Forces are ch demonstrate that		
*		= U			
17. Key Words (Suggested by Author(s))	18. Distri	bution Statement			
Finite Difference Transonic Small Perturbatio Grids Unsteady Aerodynamics	n Equation	Su	ubject Category 02		
10 Constitut Charif (of this second)	O. Carreito Circuit (4 4 4 4	7 2 4 - 7 -	no Price		
19. Security Classif. (of this report) 20. Unclassified	0. Security Classif. (of this page)	21. No. of Pa	ges 22. Price		

,			
-			
~			

3 1176 00038 5899