67 research outputs found
Recommended from our members
The Benefits and Limits of Urban Tree Planting for Environmental and Human Health
Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.Peer reviewe
Revealing Nuclear Pions Using Electron Scattering
A model for the pionic components of nuclear wave functions is obtained from
light front dynamical calculations of binding energies and densities. The
pionic effects are small enough to be consistent with measured nuclear di-muon
production data and with the nucleon sea. But the pion effects are large enough
to predict substantial nuclear enhancement of the cross section for
longitudinally polarized virtual photons for the kinematics accessible at
Jefferson Laboratory.Comment: 9 pages, 4 figure
Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering
Spin asymmetries of semi-inclusive cross sections for the production of
positively and negatively charged hadrons have been measured in deep-inelastic
scattering of polarized positrons on polarized hydrogen and 3He targets, in the
kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark
distributions are extracted as a function of x for up $(u+u_bar) and down
(d+d_bar) flavors. The up quark polarization is positive and the down quark
polarization is negative in the measured range. The polarization of the sea is
compatible with zero. The first moments of the polarized quark distributions
are presented. The isospin non-singlet combination Delta_q_3 is consistent with
the prediction based on the Bjorken sum rule. The moments of the polarized
quark distributions are compared to predictions based on SU(3)_f flavor
symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version
contains tables of asymmetries and correlation matri
Revealing Historic Invasion Patterns and Potential Invasion Sites for Two Non-Native Plant Species
The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90th meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90th meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (≥80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci
Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering
Evidence for a positive longitudinal double-spin asymmetry = 0.24
+-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive
rho^0(770) vector meson production in polarised lepton-proton scattering was
observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA
positron beam was scattered off a longitudinally polarised pure hydrogen gas
target. The average invariant mass of the photon-proton system has a value of
= 4.9 GeV, while the average negative squared four-momentum of the virtual
photon is = 1.7 GeV^2. The ratio of the present result to the
corresponding spin asymmetry in inclusive deep-inelastic scattering is in
agreement with an early theoretical prediction based on the generalised vector
meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
Evidence for charge symmetry violation in parton distributions
By comparing structure functions measured in neutrino and charged lepton deep inelastic scattering, one can test the validity of parton charge symmetry. New experiments allow us to make such tests, which set rather tight upper limits on parton charge symmetry violation (CSV) for intermediate Bjorken x, but which appear to show sizable CSV effects at small x. We show that neither nuclear shadowing nor contributions from strange and antistrange quark distributions can account for the experimentally observed difference between the two structure functions. We are therefore forced to consider the possibility of a large CSV effect in the nucleon sea quark distributions. We discuss the consequences of this effect for other observables, and we propose an experiment which could detect a large CSV component in the nucleon sea.C. Boros; J. T. Londergan; A. W. Thoma
Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression
Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection leads to a robust induction of MICA mRNA expression, however the subsequent surface expression is potently hindered. Thus, VSV lines up with human cytomegalovirus (HCMV) and adenovirus, which actively subvert the immune system by negatively affecting NKG2D-ligand surface expression. VSV infection caused an active suppression of NKG2D-ligand surface expression, affecting both endogenous and histone deacetylase (HDAC)-inhibitor induced MICA, MICB and ULBP-2 expression. The classical immune escape mechanism of VSV (i.e., the M protein blockade of nucleocytoplasmic mRNA transport) was not involved, as the VSV mutant strain, VSVΔM51, which possess a defective M protein, prevented MICA surface expression similarly to wild-type VSV. The VSV mediated down modulation of NKG2D-ligand expression did not involve apoptosis. Constitutive expression of MICA bypassed the escape mechanism, suggesting that VSV affect NKG2D-ligand expression at an early post-transcriptional level. Our results show that VSV possess an escape mechanism, which could affect the immune recognition of VSV infected cancer cells. This may also have implications for immune recognition of cancer cells after combined treatment with VSV and chemotherapeutic drugs
Erratum to: "Nuclear Effects on R=\sigma_L/\sigma_T in Deep-Inelastic Scattering" Phys.Lett. B475(2000)386
This erratum revokes the main conclusion of a Letter that reported
measurements of cross sections for deep-inelastic scattering (DIS) of leptons
on He and N targets, expressed as ratios of to
the cross section on the deuterium target.Comment: 3 pages, 1 figur
Recommended from our members
Computational Models of Classical Conditioning guest editors’ introduction
In the present special issue, the performance of current computational models of classical conditioning was evaluated under three requirements: (1) Models were to be tested against a list of previously agreed-upon phenomena; (2) the parameters were fixed across simulations; and (3) the simulations used to test the models had to be made available. These requirements resulted in three major products: (a) a list of fundamental classical-conditioning results for which there is a consensus about their reliability; (b) the necessary information to evaluate each of the models on the basis of its ordinal successes in accounting for the experimental data; and (c) a repository of computational models ready to generate simulations. We believe that the contents of this issue represent the 2012 state of the art in computational modeling of classical conditioning and provide a way to find promising avenues for future model development
Colour transparency: a novel test of QCD in nuclear interactions
Colour transparency is a cute and indispensable property of QCD as the gauge
theory of strong interaction. CT tests of QCD consist of production of the
perturbative small-sized hadronic state and measuring the strngth of its
non-perturbative diffraction nteraction in a nuclear matter. The energy
depenednce of the final- state interaction in a nuclear matter probes a
dynamical evolution from the perturbative small-sized state to the full-sized
nonperturbative hadron. QCD observables of CT experiments correspond to a novel
mechanism of scanning of hadronic wave functions from the large nonperturbative
to the small perturbative size. In these lectures, which are addressed to
experimentalists and theorists, I discuss the principle ideas of CT physics and
the physics potential of the hadron and electron facilities in the > 10 GeV
energy range. The special effort was made to present the material in the
pedagigical and self-consistent way, with an emphasis on the underlying rich
quantum-mechanical interference phenomena.Comment: 82 pages, 28 figures on request from the author., Landau Institute
rep. 9/93. (Lecture notes), [email protected]
- …