81 research outputs found

    Pregnancy glycaemia and cord-blood levels of insulin and leptin in Pakistani and white British mother–offspring pairs: findings from a prospective pregnancy cohort

    Get PDF
    Aims/hypothesis To determine the extent to which gestational fasting and postload levels of glucose explain differences in infant fat mass between UK-born Pakistani and white British infants. Methods Analyses were undertaken in a prospective pregnancy cohort study of 1,415 women and their singleton live-born infants (629 white British and 786 Pakistani). Infant fat mass was assessed by cord-blood leptin levels and fetal insulin secretion by cord-blood insulin levels. Maternal OGTTs were completed at 26–28 weeks of gestation. Results Pakistani women had higher fasting and postload glucose levels and greater incidence of gestational diabetes than white British women. Higher fasting and postload glucose levels were associated with higher cord-blood levels of insulin and leptin in all participants, irrespective of ethnicity. Cord-blood leptin levels were 16% (95% CI 6, 26) higher in Pakistani than in white British infants. After adjustment for fasting glucose levels, this difference attenuated to 7% (−3, 16), and with additional adjustment for cord-blood insulin levels it attenuated further to 5% (−4, 14). Path analyses supported the hypothesis that fasting glucose levels mediate the relationship of Pakistani ethnicity to greater fat mass at birth, as measured by cord-blood leptin levels; on average, 19% of this mediation involved fetal insulin secretion. Postload glucose levels did not act as an important mediator of ethnic differences in cord-blood leptin levels. Results were very similar when 130 women with gestational diabetes were removed. Conclusions/interpretation These novel findings suggest a role of maternal pregnancy glycaemia in mediating differences in fat mass between Pakistani and white British infants

    Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion

    Get PDF
    The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer

    Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise

    Get PDF
    Background: Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process.Results: Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals.Conclusions: These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans

    Detection of Transgenerational Spermatogenic Inheritance of Adult Male Acquired CNS Gene Expression Characteristics Using a Drosophila Systems Model

    Get PDF
    Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ) induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F1 adults after treating F0 adult males with PTZ and of F2 adults resulting from a cross between F1 males and normal females. Surprisingly, microarray clustering showed F1 male profile as closest to F1 female and F0 male profile closest to F2 male. Differentially expressed genes in F1 males, F1 females and F2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F2 males. Next, we generated microarray expression profiles of adult testis from F0 and F1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying the phenomenon. The finding that adult acquired transcriptomic alteration in soma is spermatogenically inherited across generations has potential implications in human health and evolution

    A Statistical Design for Testing Transgenerational Genomic Imprinting in Natural Human Populations

    Get PDF
    Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans

    Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions

    Get PDF
    Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis

    Evolution of Genome Size and Complexity in Pinus

    Get PDF
    BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes

    HIV-1 Residual Viremia Correlates with Persistent T-Cell Activation in Poor Immunological Responders to Combination Antiretroviral Therapy

    Get PDF
    BACKGROUND:The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14(high) CD16(-) and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences. We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14(high) CD16(-) monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution. CONCLUSIONS:Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART

    NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

    Get PDF
    Extent: 14p.Background: Without appropriate cellular models the etiology of idiopathic Parkinson’s disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson’s disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson’s Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson’s disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson’s disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.Anthony L. Cook, Alejandra M. Vitale, Sugandha Ravishankar, Nicholas Matigian, Greg T. Sutherland, Jiangou Shan, Ratneswary Sutharsan, Chris Perry, Peter A. Silburn, George D. Mellick, Murray L. Whitelaw, Christine A. Wells, Alan Mackay-Sim and Stephen A. Woo
    corecore