4 research outputs found
Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera
The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most serious insect pest species to evolve resistance against many insecticides from different chemical classes. This species has evolved resistance to the pyrethroid insecticides across its native range and is becoming a truly global pest after establishing in South America and having been recently recorded in North America. A chimeric cytochrome P450 gene, CYP337B3, has been identified as a resistance mechanism for resistance to fenvalerate and cypermethrin. Here we show that this resistance mechanism is common around the world with at least eight different alleles. It is present in South America and has probably introgressed into its closely related native sibling species, Helicoverpa zea. The different alleles of CYP337B3 are likely to have arisen independently in different geographic locations from selection on existing diversity. The alleles found in Brazil are those most commonly found in Asia, suggesting a potential origin for the incursion of H. armigera into the Americas
Data from: Does prey encounter and nutrient content affect prey selection in wolf spiders inhabiting Bt cotton fields?
Wolf spiders are abundant and voracious predators at the soil-plant interface in cotton crops. Among other prey, they attack late-instar larvae of the cotton bollworm Helicoverpa spp., an economically important pest. Consequently, wolf spiders in transgenic Bt cotton could provide significant biological control of Bt-resistant Helicoverpa larvae that descend to the soil to pupate. The predator-prey interactions between wolf spiders and Helicoverpa could, however, be constrained by the presence of alternative prey and intraguild predators. This study used laboratory enclosures to analyse the effect of alternative prey on predatory selection of the wolf spider Tasmanicosa leuckartii Thorell. The prey included another wolf spider Hogna crispipes Koch (potential intraguild predator), the ground cricket Teleogryllus commodus Walker (minor pest), and Helicoverpa armigera larvae (major pest). We tested if encounter rates, prey vulnerability, and prey nutritional content influenced the likelihood that a prey was attacked. In three-way food webs, Tasmanicosa encountered and attacked Teleogryllus and Helicoverpa in similar frequencies. However, in the presence of a competing intraguild predator and potential prey (Hogna) in a four-way food web, Tasmanicosa did not always attack Teleogryllus at first encounter, but still attacked Helicoverpa at each encounter. Helicoverpa (protein-poor) and Hogna (protein-rich) were consumed by Tasmanicosa in similar proportions, suggesting that Tasmanicosa might benefit from nutrient balance as an outcome of diverse prey in this food web. As Teleogryllus (protein rich) escapes quicker than Helicoverpa and Hogna, Hogna may be an easier protein-rich option than Teleogryllus. Field surveys showed that while Teleogryllus was the most common prey, wolf spiders feed on diverse insect taxa, as well as other spiders. That Tasmanicosa readily attacked Helicoverpa larvae in the presence of alternative prey is an encouraging result that supports the potential of Tasmanicosa predation to assist in the control of Bt-resistant Helicoverpa larvae and thereby inhibit the proliferation and spread of resistance
Data from: Does prey encounter and nutrient content affect prey selection in wolf spiders inhabiting Bt cotton fields?
Wolf spiders are abundant and voracious predators at the soil-plant interface in cotton crops. Among other prey, they attack late-instar larvae of the cotton bollworm Helicoverpa spp., an economically important pest. Consequently, wolf spiders in transgenic Bt cotton could provide significant biological control of Bt-resistant Helicoverpa larvae that descend to the soil to pupate. The predator-prey interactions between wolf spiders and Helicoverpa could, however, be constrained by the presence of alternative prey and intraguild predators. This study used laboratory enclosures to analyse the effect of alternative prey on predatory selection of the wolf spider Tasmanicosa leuckartii Thorell. The prey included another wolf spider Hogna crispipes Koch (potential intraguild predator), the ground cricket Teleogryllus commodus Walker (minor pest), and Helicoverpa armigera larvae (major pest). We tested if encounter rates, prey vulnerability, and prey nutritional content influenced the likelihood that a prey was attacked. In three-way food webs, Tasmanicosa encountered and attacked Teleogryllus and Helicoverpa in similar frequencies. However, in the presence of a competing intraguild predator and potential prey (Hogna) in a four-way food web, Tasmanicosa did not always attack Teleogryllus at first encounter, but still attacked Helicoverpa at each encounter. Helicoverpa (protein-poor) and Hogna (protein-rich) were consumed by Tasmanicosa in similar proportions, suggesting that Tasmanicosa might benefit from nutrient balance as an outcome of diverse prey in this food web. As Teleogryllus (protein rich) escapes quicker than Helicoverpa and Hogna, Hogna may be an easier protein-rich option than Teleogryllus. Field surveys showed that while Teleogryllus was the most common prey, wolf spiders feed on diverse insect taxa, as well as other spiders. That Tasmanicosa readily attacked Helicoverpa larvae in the presence of alternative prey is an encouraging result that supports the potential of Tasmanicosa predation to assist in the control of Bt-resistant Helicoverpa larvae and thereby inhibit the proliferation and spread of resistance