1,085 research outputs found

    Individual, unit and vocal clan level identity cues in sperm whale codas

    Get PDF
    Fieldwork was supported by Discovery and Equipment grants to H.W. from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Whale and Dolphin Conservation Society. S.G. and L.R. were supported by the Marine Alliance for Science and Technology for Scotland (MASTs) pooling initiative and their support is gratefully acknowledged. MASTs is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. S.G. was also supported by an NSERC Postgraduate Scholarship (PGS-M), an NSERC Canadian Graduate Scholarship (CGS-D), the Izaak Killam Memorial Scholarship, the Patrick F. Lett Fund, the Dalhousie’s Presidents Award, and an FNU fellowship for the Danish Council for Independent Research from the Ministry of Higher Education and Science supplemented by a Sapere Aude Research Talent Award.The ‘social complexity hypothesis’ suggests that complex social structure is a driver of diversity in animal communication systems. Sperm whales have a hierarchically structured society in which the largest affiliative structures, the vocal clans, are marked on ocean-basin scales by culturally transmitted dialects of acoustic signals known as ‘codas’. We examined variation in coda repertoires among both individual whales and social units—the basic element of sperm whale society—using data from nine Caribbean social units across six years. Codas were assigned to individuals using photo-identification and acoustic size measurement, and we calculated similarity between repertoires using both continuous and categorical methods. We identified 21 coda types. Two of those (‘1+1+3’ and ‘5R1’) made up 65% of the codas recorded, were shared across all units and have dominated repertoires in this population for at least 30 years. Individuals appear to differ in the way they produce ‘5R1’ but not ‘1+1+3’ coda. Units use distinct 4-click coda types which contribute to making unit repertoires distinctive. Our results support the social complexity hypothesis in a marine species as different patterns of variation between coda types suggest divergent functions, perhaps representing selection for identity signals at several levels of social structure.Publisher PDFPeer reviewe

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences

    Bioavailability of iodine in the UK-Peak District environment and its human bioaccessibility: an assessment of the causes of historical goitre in this area

    Get PDF
    Iodine is an essential micronutrient for human health. Its deficiency causes a number of functional and developmental abnormalities such as goitre. The limestone region of Derbyshire, UK was goitre-endemic until it declined from the 1930s and the reason for this has escaped a conclusive explanation. The present study investigates the cause(s) of goitre in the UK-Peak District area through an assessment of iodine in terms of its environmental mobility, bioavailability, uptake into the food chain and human bioaccessibility. The goitre-endemic limestone area is compared with the background millstone grit area of the UK-Peak District. The findings of this study show that ‘total’ environmental iodine is not linked to goitre in the limestone area, but the governing factors include iodine mobility, bioavailability and bioaccessibility. Compared with the millstone grit area, higher soil pH and calcium content of the limestone area restrict iodine mobility in this area, also soil organic carbon in the limestone area is influential in binding the iodine to the soil. Higher calcium content in the limestone area is an important factor in terms of strongly fixing the iodine to the soil. Higher iodine bioaccessibility in the millstone grit than the limestone area suggests that its oral bioaccessibility is restricted in the limestone area. Iodine taken up by plant roots is transported freely into the aerial plant parts in the millstone grit area unlike the limestone area, thus providing higher iodine into the human food chain in the millstone grit area through grazing animals unlike the goitre-prevalent limestone area

    Dengue Vaccines Regulatory Pathways: A Report on Two Meetings with Regulators of Developing Countries

    Get PDF
    Richard Mahoney and colleagues summarize two recent meetings convened by the Pediatric Dengue Vaccine Initiative and the Developing Countries' Vaccine Regulators Network on regulatory issues that need to be addressed before licensing dengue vaccines

    Methodological issues regarding power of classical test theory (CTT) and item response theory (IRT)-based approaches for the comparison of patient-reported outcomes in two groups of patients - a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients-Reported Outcomes (PRO) are increasingly used in clinical and epidemiological research. Two main types of analytical strategies can be found for these data: classical test theory (CTT) based on the observed scores and models coming from Item Response Theory (IRT). However, whether IRT or CTT would be the most appropriate method to analyse PRO data remains unknown. The statistical properties of CTT and IRT, regarding power and corresponding effect sizes, were compared.</p> <p>Methods</p> <p>Two-group cross-sectional studies were simulated for the comparison of PRO data using IRT or CTT-based analysis. For IRT, different scenarios were investigated according to whether items or person parameters were assumed to be known, to a certain extent for item parameters, from good to poor precision, or unknown and therefore had to be estimated. The powers obtained with IRT or CTT were compared and parameters having the strongest impact on them were identified.</p> <p>Results</p> <p>When person parameters were assumed to be unknown and items parameters to be either known or not, the power achieved using IRT or CTT were similar and always lower than the expected power using the well-known sample size formula for normally distributed endpoints. The number of items had a substantial impact on power for both methods.</p> <p>Conclusion</p> <p>Without any missing data, IRT and CTT seem to provide comparable power. The classical sample size formula for CTT seems to be adequate under some conditions but is not appropriate for IRT. In IRT, it seems important to take account of the number of items to obtain an accurate formula.</p

    Sympatric woodland Myotis bats form tight-knit social groups with exclusive roost home ranges

    Get PDF
    Background: The structuring of wild animal populations can influence population dynamics, disease spread, and information transfer. Social network analysis potentially offers insights into these processes but is rarely, if ever, used to investigate more than one species in a community. We therefore compared the social, temporal and spatial networks of sympatric Myotis bats (M. nattereri (Natterer's bats) and M. daubentonii (Daubenton's bats)), and asked: (1) are there long-lasting social associations within species? (2) do the ranges occupied by roosting social groups overlap within or between species? (3) are M. daubentonii bachelor colonies excluded from roosting in areas used by maternity groups? Results: Using data on 490 ringed M. nattereri and 978 M. daubentonii from 379 colonies, we found that both species formed stable social groups encompassing multiple colonies. M. nattereri formed 11 mixed-sex social groups with few (4.3%) inter-group associations. Approximately half of all M. nattereri were associated with the same individuals when recaptured, with many associations being long-term (>100 days). In contrast, M. daubentonii were sexually segregated; only a quarter of pairs were associated at recapture after a few days, and inter-sex associations were not long-lasting. Social groups of M. nattereri and female M. daubentonii had small roost home ranges (mean 0.2 km2 in each case). Intra-specific overlap was low, but inter-specific overlap was high, suggesting territoriality within but not between species. M. daubentonii bachelor colonies did not appear to be excluded from roosting areas used by females. Conclusions: Our data suggest marked species- and sex-specific patterns of disease and information transmission are likely between bats of the same genus despite sharing a common habitat. The clear partitioning of the woodland amongst social groups, and their apparent reliance on small patches of habitat for roosting, means that localised woodland management may be more important to bat conservation than previously recognised

    Variance in Centrality within Rock Hyrax Social Networks Predicts Adult Longevity

    Get PDF
    BACKGROUND: In communal mammals the levels of social interaction among group members vary considerably. In recent years, biologists have realized that within-group interactions may affect survival of the group members. Several recent studies have demonstrated that the social integration of adult females is positively associated with infant survival, and female longevity is affected by the strength and stability of the individual social bonds. Our aim was to determine the social factors that influence adult longevity in social mammals. METHODOLOGY/PRINCIPAL FINDINGS: As a model system, we studied the social rock hyrax (Procavia capensis), a plural breeder with low reproductive skew, whose groups are mainly composed of females. We applied network theory using 11 years of behavioral data to quantify the centrality of individuals within groups, and found adult longevity to be inversely correlated to the variance in centrality. In other words, animals in groups with more equal associations lived longer. Individual centrality was not correlated with longevity, implying that social tension may affect all group members and not only the weakest or less connected ones. CONCLUSIONS/SIGNIFICANCE: Our novel findings support previous studies emphasizing the adaptive value of social associations and the consequences of inequality among adults within social groups. However, contrary to previous studies, we suggest that it is not the number or strength of associations that an adult individual has (i.e. centrality) that is important, but the overall configuration of social relationships within the group (i.e. centrality SD) that is a key factor in influencing longevity

    Model studies of dense water overflows in the Faroese Channels Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

    Get PDF
    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with the experimental observations and measurements. In addition, the comparisons show that strong temporal variability in the predicted outflow pathways and circulations have a strong influence in regulating the Faroe Bank Channel and Wyville-Thomson Ridge overflows, as well as in determining the overall response in the Faroese Channels to changes in the Faroe-Shetland Channel inlet boundary conditions. © 2014 Springer-Verlag Berlin Heidelberg
    corecore