1,760 research outputs found

    Lithospheric-scale structures in New Guinea and their control on the location of gold and copper deposits

    Get PDF
    The locations of major gold and copper deposits on the island of New Guinea are considered by many to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous gases and fluids to drop out of solution. However, the data on which this idea was first proposed were often not presented or, when the data were presented, were of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical data sets to determine if the mineralization controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major gold and copper deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal structures act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma

    Emergence of Synchronous Oscillations in Neural Networks Excited by Noise

    Full text link
    The presence of noise in non linear dynamical systems can play a constructive role, increasing the degree of order and coherence or evoking improvements in the performance of the system. An example of this positive influence in a biological system is the impulse transmission in neurons and the synchronization of a neural network. Integrating numerically the Fokker-Planck equation we show a self-induced synchronized oscillation. Such an oscillatory state appears in a neural network coupled with a feedback term, when this system is excited by noise and the noise strength is within a certain range.Comment: 12 pages, 18 figure

    Impurity Energy Level Within The Haldane Gap

    Full text link
    An impurity bond JJ{'} in a periodic 1D antiferromagnetic, spin 1 chain with exchange JJ is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J<JJ{'}<J the level changes gradually from the edge of the Haldane gap to the ground state energy as the deviation dev=(JJ)/Jdev=(J-J{'})/J changes from 0 to 1. It seems that there is no threshold. Yet, there is a threshold when J>JJ{'}>J. The impurity level appears only when the deviation dev=(JJ)/Jdev=(J{'}-J)/J{'} is greater than BcB_{c}, which is near 0.3 in our calculation.Comment: Latex file,9 pages uuencoded compressed postscript including 4 figure

    A cross-correlation-based estimate of the galaxy luminosity function

    Get PDF
    Galaxie

    Conduction Block Due To Demyelination At The Ventral Root Exit Zone In Experimental Allergic Encephalomyelitis

    Get PDF
    Histological and electrophysiological studies were performed in Lewis rats with experimental allergic encephalomyelitis (EAE) to determine the cause of the neurological signs. The ventral root exit zone of the spinal cord was shown to be a major site of demyelination and conduction block. It is concluded that demyelination-induced conduction block in this region is an important cause of hind-limb weakness and paralysis in Lewis rats with EAE

    Experimental distribution of entanglement with separable carriers

    Get PDF
    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments

    Late Eocene-Oligocene granulite facies garnet-sillimanite migmatites from the Mogok Metamorphic belt, Myanmar, and implications for timing of slip along the Sagaing Fault

    Get PDF
    MPS is grateful to the Oxford-Burma Aung San Suu Kyi trust for funding research and field visits to Mogok. U-Th-Pb geochronology was funded by UCSB and NSF grants EAR-1348003 and EAR-1551054 to BH.The Mogok Metamorphic Belt (MMB) in Myanmar is a polymetamorphic, mainly Paleogene granulite-uppermost amphibolite facies terrane consisting mainly of marbles and calc-silicates hosting spinel, ruby and sapphire. Jurassic charnockite-syenite intrusions, as well as Eocene-Miocene leucogranite intrusions are also present. Pelitic rocks are uncommon, and where present, have sillimanite, both as primary inclusions in garnet and as secondary Bt + Sil coronas around garnet. Core samples from the Kyi-Tauk-Pauk gold mine at Thabeikkiyin, north of Mandalay, are mostly Grt + Bt + Sill gneisses and migmatites with uncommon interbanded Opx + Grt + Bt gneisses. Pseudosection modelling suggests prograde garnet growth occurred by biotite-dehydration melting that reached peak P–T conditions of 870–970 °C and ~ 0.9 GPa, and was followed by garnet breakdown forming coarse retrograde Bt + Sil coronas. U[sbnd]Pb monazite data show an early high-grade granulite event at 43–32 Ma, and a later upper amphibolite sillimanite-grade event peaking at 23–20 Ma, with a change in monazite chemistry after c. 22 Ma that is consistent with fluid/(melt) interaction and garnet breakdown. Elevated Th/U ratios from ~35 to 22 Ma, and at ~18 Ma are compatible with melt influx at that time, timing that is similar to the age of the regional Kabaing leucogranite in the Mogok valley area. Our data show that peak granulite facies metamorphism along the Mogok Metamorphic belt was mainly Middle Eocene-Early Oligocene, with upper amphibolite facies metamorphism extending to earliest Miocene. The MMB is cut abruptly by the Sagaing fault, a large-scale dextral fault that extends from the Andaman Sea north to the East Himalayan syntaxis. Our new U[sbnd]Pb monazite data constrain the oldest age of initiation of the eastern branch of the cross-cutting Sagaing dextral strike-slip fault atPostprintPeer reviewe

    Interference effects in electronic transport through metallic single-wall carbon nanotubes

    Full text link
    In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed experimentally, that metallic nanotubes, strongly coupled to external electrodes, may act as coherent molecular waveguides for electronic transport. The experimental results were supported by theoretical analysis based on the scattering matrix approach. In this paper we analyze theoretically this problem using a real-space approach, which makes it possible to control quality of interface contacts. Electronic structure of the nanotube is taken into account within the tight-binding model. External electrodes and the central part (sample) are assumed to be made of carbon nanotubes, while the contacts between electrodes and the sample are modeled by appropriate on-site (diagonal) and hopping (off-diagonal) parameters. Conductance is calculated by the Green function technique combined with the Landauer formalism. In the plots displaying conductance {\it vs.} bias and gate voltages, we have found typical diamond structure patterns, similar to those observed experimentally. In certain cases, however, we have found new features in the patterns, like a double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.
    corecore