21 research outputs found

    Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions

    Get PDF
    The design and synthesis of a β-turn mimetic library as a key component of a small molecule library targeting the major recognition motifs involved in protein–protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (Ki = 390 nM and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4,200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C2 symmetry of the template, a typical 20 × 20 × 20-mix (8,000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid–liquid or liquid–solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands, but also additional side chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as Ki = 80 nM for KOR). A key insight to emerge from the studies is that the phenol of Tyr in endogenous ligands bearing the H-Tyr-Pro-Trp/Phe-Phe-NH2 β-turn is important for MOR binding, but may not be important for KOR (accommodated, but not preferred) and that the resulting selectivity for KOR observed with its removal can be increased by replacing the phenol OH with a chlorine substituent further enhancing KOR affinity

    NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41

    No full text
    Due to the inherently flexible nature of a protein – protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus–cell and cell–cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement (PRE) experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein – protein interaction surface

    Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library

    No full text
    [Image: see text] The evaluation of a comprehensive α-helix mimetic library for binding the gp41 NHR hydrophobic pocket recognizing an intramolecular CHR α-helix provided a detailed depiction of structural features required for binding and led to the discovery of small molecule inhibitors (K(i) 0.6–1.3 µM) that not only match or exceed the potency of those disclosed over the past decade, but that also exhibit effective activity in a cell–cell fusion assay (IC(50) 5–8 µM)

    Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors

    No full text
    Electrophilic small molecules are an important class of chemical probes and drugs that produce biological effects by irreversibly modifying proteins. Examples of electrophilic drugs include covalent kinase inhibitors that are used to treat cancer and the multiple sclerosis drug dimethyl fumarate. Optimized covalent drugs typically inactivate their protein targets rapidly in cells, but ensuing time-dependent, off-target protein modification can erode selectivity and diminish the utility of reactive small molecules as chemical probes and therapeutics. Here, we describe an approach to confer kinetic selectivity to electrophilic drugs. We show that an analogue of the covalent Bruton’s tyrosine kinase (BTK) inhibitor Ibrutinib bearing a fumarate ester electrophile is vulnerable to enzymatic metabolism on a time-scale that preserves rapid and sustained BTK inhibition, while thwarting more slowly accumulating off-target reactivity in cell and animal models. These findings demonstrate that metabolically labile electrophilic groups can endow covalent drugs with kinetic selectivity to enable perturbation of proteins and biochemical pathways with greater precision

    Quantitative Chemical Proteomic Profiling of the <i>in Vivo</i> Targets of Reactive Drug Metabolites

    No full text
    Idiosyncratic liver toxicity represents an important problem in drug research and pharmacotherapy. Reactive drug metabolites that modify proteins are thought to be a principal factor in drug-induced liver injury. Here, we describe a quantitative chemical proteomic method to identify the targets of reactive drug metabolites <i>in vivo</i>. Treating mice with clickable analogues of four representative hepatotoxic drugs, we demonstrate extensive covalent binding that is confined primarily to the liver. Each drug exhibited a distinct target profile that, in certain cases, showed strong enrichment for specific metabolic pathways (<i>e.g.</i>, lipid/sterol pathways for troglitazone). Site-specific proteomics revealed that acetaminophen reacts with high stoichiometry with several conserved, functional (seleno)­cysteine residues throughout the liver proteome. Our findings thus provide an advanced experimental framework to characterize the proteomic reactivity of drug metabolites <i>in vivo</i>, revealing target profiles that may help to explain mechanisms and identify risk factors for drug-induced liver injury

    Quantitative Chemical Proteomic Profiling of the <i>in Vivo</i> Targets of Reactive Drug Metabolites

    No full text
    Idiosyncratic liver toxicity represents an important problem in drug research and pharmacotherapy. Reactive drug metabolites that modify proteins are thought to be a principal factor in drug-induced liver injury. Here, we describe a quantitative chemical proteomic method to identify the targets of reactive drug metabolites <i>in vivo</i>. Treating mice with clickable analogues of four representative hepatotoxic drugs, we demonstrate extensive covalent binding that is confined primarily to the liver. Each drug exhibited a distinct target profile that, in certain cases, showed strong enrichment for specific metabolic pathways (<i>e.g.</i>, lipid/sterol pathways for troglitazone). Site-specific proteomics revealed that acetaminophen reacts with high stoichiometry with several conserved, functional (seleno)­cysteine residues throughout the liver proteome. Our findings thus provide an advanced experimental framework to characterize the proteomic reactivity of drug metabolites <i>in vivo</i>, revealing target profiles that may help to explain mechanisms and identify risk factors for drug-induced liver injury

    Quantitative Chemical Proteomic Profiling of the <i>in Vivo</i> Targets of Reactive Drug Metabolites

    No full text
    Idiosyncratic liver toxicity represents an important problem in drug research and pharmacotherapy. Reactive drug metabolites that modify proteins are thought to be a principal factor in drug-induced liver injury. Here, we describe a quantitative chemical proteomic method to identify the targets of reactive drug metabolites <i>in vivo</i>. Treating mice with clickable analogues of four representative hepatotoxic drugs, we demonstrate extensive covalent binding that is confined primarily to the liver. Each drug exhibited a distinct target profile that, in certain cases, showed strong enrichment for specific metabolic pathways (<i>e.g.</i>, lipid/sterol pathways for troglitazone). Site-specific proteomics revealed that acetaminophen reacts with high stoichiometry with several conserved, functional (seleno)­cysteine residues throughout the liver proteome. Our findings thus provide an advanced experimental framework to characterize the proteomic reactivity of drug metabolites <i>in vivo</i>, revealing target profiles that may help to explain mechanisms and identify risk factors for drug-induced liver injury

    Development and Optimization of Piperidyl-1,2,3-Triazole Ureas as Selective Chemical Probes of Endocannabinoid Biosynthesis

    No full text
    We have previously shown that 1,2,3-triazole ureas (1,2,3-TUs) act as versatile class of irreversible serine hydrolase inhibitors that can be tuned to create selective probes for diverse members of this large enzyme class, including diacylglycerol lipase-β (DAGLβ), a principal biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we provide a detailed account of the discovery, synthesis, and structure–activity relationship (SAR) of (2-substituted)-piperidyl-1,2,3-TUs that selectively inactivate DAGLβ in living systems. Key to success was the use of activity-based protein profiling (ABPP) with broad-spectrum and tailored activity-based probes to guide our medicinal chemistry efforts. We also describe an expanded repertoire of DAGL-tailored activity-based probes that includes biotinylated and alkyne agents for enzyme enrichment coupled with mass spectrometry-based proteomics and assessment of proteome-wide selectivity. Our findings highlight the broad utility of 1,2,3-TUs for serine hydrolase inhibitor development and their application to create selective probes of endocannabinoid biosynthetic pathways

    Discovery and Optimization of Piperidyl-1,2,3-Triazole Ureas as Potent, Selective, and in Vivo-Active Inhibitors of α/β-Hydrolase Domain Containing 6 (ABHD6)

    No full text
    α/β-Hydrolase domain containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) to regulate certain forms of cannabinoid receptor-dependent signaling in the nervous system. The full spectrum of ABHD6 metabolic activities and functions is currently unknown and would benefit from selective, in vivo-active inhibitors. Here, we report the development and characterization of an advanced series of irreversible (2-substituted)-piperidyl-1,2,3-triazole urea inhibitors of ABHD6, including compounds KT182 and KT203, which show exceptional potency and selectivity in cells (<5 nM) and, at equivalent doses in mice (1 mg kg<sup>–1</sup>), act as systemic and peripherally restricted ABHD6 inhibitors, respectively. We also describe an orally bioavailable ABHD6 inhibitor, KT185, that displays excellent selectivity against other brain and liver serine hydrolases in vivo. We thus describe several chemical probes for biological studies of ABHD6, including brain-penetrant and peripherally restricted inhibitors that should prove of value for interrogating ABHD6 function in animal models

    Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library

    No full text
    [Image: see text] The evaluation of a comprehensive α-helix mimetic library for binding the gp41 NHR hydrophobic pocket recognizing an intramolecular CHR α-helix provided a detailed depiction of structural features required for binding and led to the discovery of small molecule inhibitors (K(i) 0.6–1.3 µM) that not only match or exceed the potency of those disclosed over the past decade, but that also exhibit effective activity in a cell–cell fusion assay (IC(50) 5–8 µM)
    corecore