608 research outputs found

    Nitric Oxide Production as an Indication of \u3ci\u3eMycobacterium Bovis \u3c/i\u3eInfection in White-Tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e)

    Get PDF
    White-tailed deer ( Odocoileus virginianus ) are reservoirs for Mycobacterium bovis in northeast Michigan, USA. Production of nitric oxide (NO) by activated macrophages is a potent mechanism of mycobacterial killing. The capacity of macrophages to produce NO, however, varies among mammalian species. The objective of this study was to determine if mononuclear cells from white-tailed deer produce nitrite as an indication of NO production and, if so, is NO produced in response to stimulation with M. bovis antigens. Supernatants were harvested from adherent peripheral blood mononuclear cell (PBMC) cultures that had been stimulated with either Mannheimia haemolytica lipopolysaccharide (LPS) or media alone (i.e., no stimulation). Nitrite levels within M. haemolytica LPS-stimulated culture supernatants exceeded (P \u3c 0.05) those detected within supernatants from non-stimulated cultures as well as those detected within supernatants from cultures receiving an inhibitor of NO synthase in addition to M. haemolytica LPS. In response to stimulation with M. bovis antigens, nitrite production by PBMC from M. bovis -infected deer exceeded (P \u3c 0.05) the production by PBMC from non-infected deer. The response of PBMC from infected deer to M. bovis antigens exceeded (P \u3c 0.05) the response of parallel cultures from the same deer receiving no stimulation. The response of PBMC from M. bovis -infected deer to M. avium antigens did not differ from that of PBMC from M. bovis infected deer to no stimulation or from that of PBMC from non-infected deer to M. avium antigens. These findings indicate that adherent PBMC from white-tailed deer are capable of NO production and that mononuclear cells isolated from M. bovis -infected white-tailed deer produce NO in an antigen-specific recall response

    Nitric Oxide Production as an Indication of \u3ci\u3eMycobacterium Bovis \u3c/i\u3eInfection in White-Tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e)

    Get PDF
    White-tailed deer ( Odocoileus virginianus ) are reservoirs for Mycobacterium bovis in northeast Michigan, USA. Production of nitric oxide (NO) by activated macrophages is a potent mechanism of mycobacterial killing. The capacity of macrophages to produce NO, however, varies among mammalian species. The objective of this study was to determine if mononuclear cells from white-tailed deer produce nitrite as an indication of NO production and, if so, is NO produced in response to stimulation with M. bovis antigens. Supernatants were harvested from adherent peripheral blood mononuclear cell (PBMC) cultures that had been stimulated with either Mannheimia haemolytica lipopolysaccharide (LPS) or media alone (i.e., no stimulation). Nitrite levels within M. haemolytica LPS-stimulated culture supernatants exceeded (P \u3c 0.05) those detected within supernatants from non-stimulated cultures as well as those detected within supernatants from cultures receiving an inhibitor of NO synthase in addition to M. haemolytica LPS. In response to stimulation with M. bovis antigens, nitrite production by PBMC from M. bovis -infected deer exceeded (P \u3c 0.05) the production by PBMC from non-infected deer. The response of PBMC from infected deer to M. bovis antigens exceeded (P \u3c 0.05) the response of parallel cultures from the same deer receiving no stimulation. The response of PBMC from M. bovis -infected deer to M. avium antigens did not differ from that of PBMC from M. bovis infected deer to no stimulation or from that of PBMC from non-infected deer to M. avium antigens. These findings indicate that adherent PBMC from white-tailed deer are capable of NO production and that mononuclear cells isolated from M. bovis -infected white-tailed deer produce NO in an antigen-specific recall response

    Diagnostic Implications of Antigen-Induced Gamma Interferon, Nitric Oxide, and Tumor Necrosis Factor Alpha Production by Peripheral Blood Mononuclear Cells from \u3ci\u3eMycobacterium bovis\u3c/i\u3e-Infected Cattle

    Get PDF
    Bovine tuberculosis in the United States has proven costly to cattle producers as well as to government regulatory agencies. While in vivo responsiveness to mycobacterial antigens is the current standard for the diagnosis of tuberculosis, in vitro assays are gaining acceptance, especially as ancillary or complementary tests. To evaluate in vitro indices of cellular sensitization, antigen-induced gamma interferon (IFN-γ), nitric oxide (NO), and tumor necrosis factor alpha (TNF-α) responses by blood mononuclear cells from Mycobacterium bovis-infected cattle were quantified and compared. Using an aerosol model of infection, two doses of each of two strains of M. bovis (95-1315 and HC-2045T) were used to induce a range of IFN-γ, NO, and TNF-α responses. Infection-specific increases in NO, but not in IFN-γ or TNF-α, were detected in nonstimulated cultures at 48 h, a finding that is indicative of nonspecific activation and spontaneous release of NO. The infective dose of M. bovis organisms also influenced responses. At 34 days postinfection, IFN-γ, NO, and TNF-α responses in antigen-stimulated cells from cattle receiving 105 CFU of M. bovis organisms were greater than responses of cells from cattle infected with 103 CFU of M. bovis organisms. The NO response, but not the IFN-γ and TNF-α responses, was influenced by infective strains of M. bovis. The TNF-α, NO, and IFN-γ responses followed similar kinetics, with strong positive associations among the three readouts. Overall, these findings indicate that NO and TNF-α, like IFN-γ, may prove useful as indices for the diagnosis of bovine tuberculosis

    Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers

    Get PDF
    General relativistic deflection of light by mass, dipole, and quadrupole moments of gravitational field of a moving massive planet in the Solar system is derived. All terms of order 1 microarcsecond are taken into account, parametrized, and classified in accordance with their physical origin. We calculate the instantaneous patterns of the light-ray deflections caused by the monopole, the dipole and the quadrupole moments, and derive equations describing apparent motion of the deflected position of the star in the sky plane as the impact parameter of the light ray with respect to the planet changes due to its orbital motion. The present paper gives the physical interpretation of the observed light-ray deflections and discusses the observational capabilities of the near-future optical (SIM) and radio (SKA) interferometers for detecting the Doppler modulation of the radial deflection, and the dipolar and quadrupolar light-ray bendings by the Jupiter and the Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.

    A novel approach to fireball modeling: The observable and the calculated

    Get PDF
    Estimating the mass of a meteoroid passing through the Earth's atmosphere is essential to determining potential meteorite fall positions. High-resolution fireball images from dedicated camera networks provide the position and timing for fireball bright flight trajectories. There are two established mass determination methods: the photometric and the dynamic. A new approach is proposed, based on the dynamic method. A dynamic optimization initially constrains unknown meteoroid characteristics which are then used in a parametric model for an extended Kalman filter. The extended Kalman filter estimates the position, velocity, and mass of the meteoroid body throughout its flight, and quantitatively models uncertainties. Uncertainties have not previously been modeled so explicitly and are essential for determining fall distributions for potential meteorites. This two-step method aims to automate the process of mass determination for application to any trajectory data set and has been applied to observations of the Bunburra Rockhole fireball. The new method naturally handles noisy raw data. Initial and terminal bright flight mass results are consistent with other works based on the established photometric method and cosmic ray analysis. A full analysis of fragmentation and the variability in the heat-transfer coefficient will be explored in future versions of the model

    Search for TeV Gamma-Rays from Shell-Type Supernova Remnants

    Get PDF
    If cosmic rays with energies <100 TeV originate in the galaxy and are accelerated in shock waves in shell-type supernova remnants (SNRs), gamma-rays will be produced as the result of proton and electron interactions with the local interstellar medium, and by inverse Compton emission from electrons scattering soft photon fields. We report on observations of two supernova remnants with the Whipple Observatory's 10 m gamma-ray telescope. No significant detections have been made and upper limits on the >500 GeV flux are reported. Non-thermal X-ray emission detected from one of these remnants (Cassiopeia A) has been interpreted as synchrotron emission from electrons in the ambient magnetic fields. Gamma-ray emission detected from the Monoceros/Rosette Nebula region has been interpreted as evidence of cosmic-ray acceleration. We interpret our results in the context of these observations.Comment: 4 pages, 2 figures, to appear in the proceedings of 26th International Cosmic Ray Conference (Salt Lake City, 1999

    Global Models of Runaway Accretion in White Dwarf Debris Disks

    Full text link
    A growing sample of white dwarfs (WDs) with metal-enriched atmospheres are accompanied by excess infrared emission, indicating that they are encircled by a compact dusty disk of solid debris. Such `WD debris disks' are thought to originate from the tidal disruption of asteroids or other minor bodies, but the precise mechanism(s) responsible for transporting matter to the WD surface remains unclear, especially in those systems with the highest inferred metal accretion rates dM_Z/dt ~ 1e8-1e10 g/s. Here we present global time-dependent calculations of the coupled evolution of the gaseous and solid components of WD debris disks. Solids transported inwards (initially due to PR drag) sublimate at tens of WD radii, producing a source of gas that accretes onto the WD surface and viscously spreads outwards in radius, where it overlaps with the solid disk. If the aerodynamic coupling between the solids and gaseous disks is sufficiently strong (and/or the gas viscosity sufficiently weak), then gas builds up near the sublimation radius faster than it can viscously spread away. Since the rate of drag-induced solid accretion increases with gas density, this results in a runaway accretion process, during which the WD accretion rate reaches values orders of magnitude higher than can be achieved by PR drag alone. We explore the evolution of WD debris disks across a wide range of physical conditions and calculate the predicted distribution of observed accretion rates dM_Z/dt, finding reasonable agreement with the current sample. Although the conditions necessary for runaway accretion are at best marginally satisfied given the minimal level of aerodynamic drag between circular gaseous and solid disks, the presence of other stronger forms of solid-gas coupling---such as would result if the gaseous disk is only mildly eccentric---substantially increase the likelihood of runaway accretion.Comment: 23 pages, 20 figures, submitted to MNRA

    Precise Masses for Wolf 1062 AB from Hubble Space Telescope Interferometric Astrometry and McDonald Observatory Radial Velocities

    Get PDF
    We present an analysis of astrometric data from FGS 3, a white-light interferometer on {\it HST}, and of radial velocity data from two ground-based campaigns. We model the astrometric and radial velocity measurements simultaneously to obtain parallax, proper motion and component masses for Wolf 1062 = Gl 748 AB (M3.5V). To derive the mass fraction, we relate FGS 3 fringe scanning observations of the science target to a reference frame provided by fringe tracking observations of a surrounding star field. We obtain an absolute parallax πabs=98.0±0.4\pi_{abs} = 98.0 \pm 0.4 milliseconds of arc, yielding {\cal M}_A = 0.379 \pm 0.005{\cal M}_{\sun} and {\cal M}_B= 0.192 \pm 0.003 {\cal M}_{\sun}, high quality component masses with errors of only 1.5%.Comment: 13 pages, 7 figures. To appear in AJ March 200
    corecore