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Abstract—Estimating the mass of a meteoroid passing through the Earth’s atmosphere is
essential to determining potential meteorite fall positions. High-resolution fireball images
from dedicated camera networks provide the position and timing for fireball bright flight
trajectories. There are two established mass determination methods: the photometric and the
dynamic. A new approach is proposed, based on the dynamic method. A dynamic
optimization initially constrains unknown meteoroid characteristics which are then used in a
parametric model for an extended Kalman filter. The extended Kalman filter estimates the
position, velocity, and mass of the meteoroid body throughout its flight, and quantitatively
models uncertainties. Uncertainties have not previously been modeled so explicitly and are
essential for determining fall distributions for potential meteorites. This two-step method
aims to automate the process of mass determination for application to any trajectory data
set and has been applied to observations of the Bunburra Rockhole fireball. The new
method naturally handles noisy raw data. Initial and terminal bright flight mass results are
consistent with other works based on the established photometric method and cosmic ray
analysis. A full analysis of fragmentation and the variability in the heat-transfer coefficient
will be explored in future versions of the model.

INTRODUCTION

The full potential of meteorite analysis for
providing valuable insights about protoplanctary disk
formation cannot be reached without first constraining
their origins in the solar system. As with terrestrial
rocks, without context (outcrop) information, our
understanding of the record that meteorites contain will
only ever be partial. The recording of fireball
phenomena permits the reconstruction of orbits, as well
as determines possible meteorite fall locations to enable
the recovery of fresh meteorites whose unique geological
record can be fully exploited. This objective has been
the driver for a number of dedicated fireball camera
network projects dating back to the late 1950s
(Ceplecha 1961) and has led to the recovery of multiple
meteorites, including two by the Desert Fireball
Network (DFN) in Australia during its trial phase
(Towner et al. 2011; Spurny et al. 2012).

Over the next few months, the DFN will establish
over 50 new Automated Desert Fireball Observatories
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(ADFOs), with all sky digital cameras, to expand its
coverage to an area in excess of 2 million km?. This will
make it the largest fireball network in history, and with
>100 TB of data being generated per year, automated
systems of data analysis will be needed. The calculation
of terminal bright flight mass will form part of the
DFN’s automated work-flow from fireball detection and
triangulation through to dark flight and climate
modeling for fall calculations.

Once the light of the fireball goes out, there is
usually no way of tracking any remaining fragments to
the ground. To model this dark flight, and determine
any potential fall positions, the terminal bright flight
mass must be ascertained. An automated method of
analyzing the bright flight data to extract this
information is required and previous methods were
investigated for suitability. The two previous approaches
to analyzing image data for mass determination are: the
photometric method and the dynamic method.

The photometric method relates the luminosity of a
fireball to the proportion of kinetic energy that is lost
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due to ablation, as a method for obtaining masses
(Ceplecha et al. 1998). It uses the luminosity of the
fireball to determine the incoming “photometric” mass,
and a corresponding luminous efficiency parameter as a
proxy for mass loss. To apply this method, a high-
resolution light curve of a fireball needs to be acquired.
This can be obtained by the addition of a photoelectric
photometer to a fireball observatory (Spurny et al.
2012). Not only is this an expensive piece of equipment
in itself but also requires additional power supplies,
which are limited in the remote locations of the DFN
observatories.

Although advancements have been made to the
photometric method, including fragmentation as well as
dynamical aspects (Ceplecha and ReVelle 2005), it
ultimately still requires qualitative comparisons of
trajectories with the light curve and manual inputs of
fragmentation information (Ceplecha and ReVelle
2005). These qualitative judgments make this method
manually intensive and remove the ability to create fully
reproducible data.

The dynamic method uses equations of flight
through the atmosphere to calculate mass from
deceleration (Whipple 1952). In the past, this approach
was limited by the accuracy of measurements that could
be interpreted from photographic plates (Ceplecha 1961;
McCrosky et al. 1971). Ceplecha et al. (1993) used
dynamic equations to determine the change in velocity
and mass of a meteoroid during its trajectory, along
with timings of single fragmentation events. However,
the authors were unable to calculate initial masses and
therefore relied on initial photometric masses.
Considering mass loss is relative, this means the
terminal mass is based on this photometric entry mass
which may be unreliable (Brykina and Stulov 2012).

Difficulties with the dynamic method are also due
to the unknown characteristics of the meteoroid such as
density and shape that are required for the dynamic
calculation. Work by Stulov et al. (1995) has enabled
the application of an analytical solution by combining
these unknown parameters into two dimensionless
constants. This has been applied by Gritsevich (2008a,
2008b) to the Canadian MORP network data sets, as
well as others that have led to meteorite recoveries. This
provides good model fits to the data to which it was
applied, but assumptions of these same meteoroid
characteristics are required to quantify entry mass and
subsequently terminal bright flight mass.

Given the limitations of established techniques and
improvements to observation technologies, we chose to
explore a new approach to the dynamic method. The
use of an extended Kalman filter to incorporate the
data into the model and provide error estimates was
determined to be the most promising approach. An
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extended Kalman filter is a method of statistically
optimizing estimates of an instantancous state of
nonlinear dynamic systems (Grewal and Andrews 1993).
An accompanying covariance matrix allows the
uncertainties in the state estimations to be determined
and propagated. The Kalman filter estimates the bright
flight states (distance traveled, mass, and velocity) based
on a two-step process of “predict” and “update.”
However, this method still requires values for meteoroid
parameters to be estimated. To maximize confidence in
chosen meteoroid parameters, rather than simply
picking values, the Extended Kalman Filter is preceded
by a dynamic optimization step. This stage is
implemented to constrain the combinations of
meteoroid characteristics that will permit a fit to the
data. These parameters are then used to initialize a
series of extended Kalman filters. To test the new
method of mass determination, the data set of the
Bunburra Rockhole meteorite fall is used as published
by Spurny et al. (2012). This is the most complete
fireball data set for which a meteorite has been
recovered.

The objective of an automated method of mass
determination requires an efficient method that will give
sufficiently accurate results to determine a practical
search area for likely meteorites. As this new approach
is based entirely on the photographic data, this
significantly reduces the cost of each ADFO unit as
there is no requirement for a photoelectric photometer.
The new approach to fireball modeling that we outline
here will enable the terminal bright flight mass to be
approximated from observable data in a fully
automatable method, with uncertainties, to enable rapid
recovery of meteorite samples which may provide
invaluable data for cosmochemists (particularly when
combined with orbital data).

MODELING

In the case of the DFN, ADFOs record high-
resolution images throughout the night. Fireball
observations made by multiple long-exposure cameras
can be used to triangulate the position (latitude,
longitude, and altitude) of the meteoroid during its
flight. To acquire velocity information, however,
requires some specialized modifications. Using a
customized shutter within the camera lenses, the light
path is interrupted at a known frequency
(approximately 20 Hz in the ADFO systems). After
calibration to remove the effects of lens distortion and
triangulation, we have a series of position observations
which underpins the subsequent modeling. Velocity may
be calculated based on the change in these positions
with time. The accuracy of the position observations
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determines the accuracy of the velocity values and can
cause high scatter in values as seen in the Bunburra
Rockhole data set.

All models explored in this work are based on the
dynamic equations that characterize the change in mass
and velocity of a meteoroid during bright flight through
the atmosphere (Baldwin and Sheaffer 1971):

dv 1cgp,v*S .
EZ_EL—’_g’SlnYe (0]
dm__Tap,'s
dt 2 H

(@)

where m is the meteoroid mass (kg), v is the velocity
(m s~ 1Y), 7 is the time (s), ¢q is the drag coefficient, p,
is the atmospheric density (kg m~°), S is the cross
sectional area of the body (m?), g is the gravitational
constant (m s '), v. is the entry angle of the
meteoroid to the horizontal, H* is the enthalpy of
sublimation (J kg™'), and ¢, is the heat-transfer
coefficient.

The position or length along the path of the
trajectory, /, is the primary observation extracted from
the triangulated images. Its change with time is also
included in all models and gives the velocity, i.e., % =

A New Approach

The new approach to determining the terminal
masses of meteoroids discussed in this paper is a two-
step approach, based on the dynamic Equations 1-2.
The initial step is a dynamic optimization which runs a
global search for the combination of meteoroid
characteristics (model parameters) and unknown initial
states (initial mass, mo and initial velocity, v,) that
provide a good fit to the observational data. The
initial position, [y, is also an initial state but as the
length along the flight path is relative, we can set it to
be 0 m (similar to Ceplecha and ReVelle 2005). Errors
associated with observational uncertainties in this
postulation will be taken into account when the
extended Kalman filter is initialized.

The second, main step, runs an extended Kalman
filter which uses the unknown initial states and
parameters from the dynamic optimization to estimate
the states (position, /; mass, m; velocity, v) throughout
the entire trajectory, including an explicit uncertainty
model.

The cross sectional area, S, in the dynamic
Equations 1-2, is dependent on the amount of mass lost
due to ablation and may be defined as a function of the
mass, meteoroid density, p.,, and shape parameter, 4 (a
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cross sectional area to volume ratio) (equation 3.5;

Bronshten 1983)
S—4 (ﬂ) 3)
Pm

The change in cross sectional area can be written in
terms of the shape change parameter, p (Equation 4)

(Bronshten 1983).
n
S =5 (ﬁ) @)
my

So and my are the initial cross sectional area and
initial mass respectively.

By writing Equation 3 in terms of initial parameters
only we can combine it with Equation 4 to give

i

B m02/3_”

= Ay

m* (5)
pm() /3

Substituting Equation 5 into Equations 1-2 allows
the dependent variable S to be removed from the
dynamic equations. The modeling of meteoroid states
during bright flight will therefore be based on the
following differential equations.

2
dv o 1 Cd paAO ( Biu) 2. (n—1)
a = — 5 5 I’Vlo Vv-m

+ gsinvy, (6)

pm() /3
dm 1 cnpaAo (2/3—”) o
P _5*72/31740 v'm (7
H pm()

Constants Used in All Model Stages

Although the unknown parameters p and 4 in
Equations 6-7 are variable, they are approximated as
constant for both the dynamic optimization and EKF
models, along with the remaining unknown initial
parameters, mg, vy, and A—“m (which will hereby be
referred to as the shape-ci)g?lsity parameter). This has
been the typical assumption in previous works also
(Bronshten 1983; Gritsevich 2008b).

The shape change parameter, i, has a range from 0,
being no rotation, to 2/3, indicating that rotation is
rapid enough for uniform ablation to occur across the
entire surface area. It is typically assumed that p has a
value of 2/3 (Bronshten 1983) and as the dynamic
equations are highly sensitive to the value of p, this
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value is also used in our current model and will not be
optimized further at this stage. Note that this removes m
as a coefficient from Equations 6-7, although m is still
present in the optimization as the initial value for mass.

Atmospheric Properties

The NRLMSISE-00 empirical atmosphere model
was used to calculate values of atmospheric densities
and pressures (Picone et al. 2002). This enables values
for temperature, pressure, density, speed of sound, and
dynamic viscosity of the atmosphere to be determined
as accurately as possible.

Drag Coefficient

The drag coefficient, ¢q, can be calculated
throughout the trajectory based on a set of fluid
dynamic parameters. ReVelle (1976) discusses the
dependence of the Reynolds number and flow regime on
the drag coefficient, but does not include a criterion for
when the Mach regime is no longer hypersonic. This is
unlikely to happen during fireball phenomena but is
included here for completeness.

The Knudsen number (Kn) (Equation 8) can be
used to determine the flow regime of the flight path and
is the ratio of the mean free path length to the object
length. Kn may be written as a function of the
calculable Mach (Ma) and Reynolds (Re) numbers
(Hayes and Probstein 1959; Truitt 1959) and the ratio
of specific heats y, which for dry air at atmospheric
temperatures is taken to be 1.40).

Ma Y
Kn=— — 8
" Re>< 2 ®)

Values of Kn > 10 indicate free molecular flow,
10 < Kn < 0.1 a transitional flow regime, and Kn < 0.1
continuum flow (ReVelle 1976). Within the continuum
flow regime, the Mach regime defined by the Mach
number needs to be taken into consideration. Only
when below a Ma of 1.1 is Re used to directly
calculate the drag coefficient. For values below the
critical Re associated with drag reattachment
(Re ~ 2e5) (Schlichting et al. 2000), Equation 11 from
Haider and Levenspiel (1989) is used, although it is
expected that bright flight values of ¢4 will remain in
the hypersonic regime. Determining the values of ¢4 for
different regimes and turbulence are outlined in
Table 1.

For the Bunburra Rockhole data set, the meteoroid
remains in the hypersonic regime for the duration of
bright flight. In this version of the model, for simplicity,
we will assume a hypersonic drag coefficient
corresponding to that of a circular cylinder.
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Dynamic Optimization

The dynamic optimization based on Equations 67
aims to approximate values for ﬁ and 7, as well as
an entry mass, mo, and velocity, vo. This is performed
by assigning assumed values to these parameters within
given ranges and the constrained optimization then
searches millions of combinations to determine the set
of parameters that best fit the position data and return
the lowest cost. The cost function used is the sum of the
squared errors between the modeled and the observed
position data. Costs are normalized to the lowest value,
showing 1.0 to be the best fit, to allow comparisons
between different parameter sets. As there are multiple
unknown parameters, there is a large degree of freedom
in the number of plausible combinations. The models
that produce cost values >0.98 (best 2%) are selected
for consideration in the following stage of the mass
determination method.

The parameter constraints used are shown in
Table 2. Ranges for p, —are given as assumed
preatmospheric meteorite density ranges for typical
meteorites. Agpnere = 1.21 although it is expected that A
values should typically be in the range of 2-4 (Zhdan
et al. 2007). The shape parameter may also be less than
that of a sphere depending on which axis is oriented in
the direction of the trajectory. The lower and upper
bounds for 4, are chosen as realistic ranges. 7+ is given
a wide range so that the average value of this variable
throughout bright flight is determined.

Extended Kalman Filter

An extended Kalman filter (EKF) is a method of
statistically optimizing estimates of state variables for
nonlinear dynamic systems (Grewal and Andrews 1993).
For bolide bright flight path analysis, the state vector, xy,
is the instantaneous representation of the state at a time k,
and is written in terms of the variables’ distance along the
bright flight path (/), mass (m), and velocity (v) (Equation 9).

X1 lk
Xe= | x2 | = mu ©)
X3 A Vic

The state vector at 7, is initialized as

0
Xg = my
Yo

(10)

X, can be determined using the nonlinear state
equations:
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Table 1. Calculations used to determine the drag coefficient in various fluid dynamic regimes.

Knudsen
Flow regime

number range

Mach number range

Drag coefficient formulae

Free molecular flow Kn > 10 cq =20

(ReVelle 1976; Masson et al. 1960)
Transition flow regime 0.1 < Kn<10 ca = e 4 (cfim — cgnt) e 0001k

(Khanukaeva 2005)
Continuum flow regime Kn <0.1 Ma — cqg = 0.92 for spheres

Hypersonic to re-entry (Bronshten 1983; ReVelle 1976; Masson et al. 1960)

cq = 4/3 for circular cylinders

(Truitt 1959)

cq = 2.0 for tiles and bricks

(Zhdan et al. 2007)

Ma <8 ca =gl + 4R + 75

where 4, B, C, D are variables based on the sphericity

of the object (see Haider and Levenspiel 1989)
Table 2. Parameter  constraints  applied  during Rhpet = f(fck—l\k—lvk) (13)
dynamic optimization.

Min Max Pij—1 = F Py Ff + Oy (14)
mg 1 kg 1000 kg
' (F1r3$(')to\(/)elo<:1tgll value) (First VelOCIE}{ value) Fj is the state transition matrix (Equation 15). Py is
— m s +3000 m s . . . .

A 0.5 3.5 the covariance matrix for the state estimate and is a
P (3500 kgm )" (1500 kg m )"’ primary motivation for using an EKF. The diagonal
o 25 x 107 kg J™! 50 x 10" kg J! elements can be read to give an indication of the

Xk = fxp—1, k= 1) + wy (11)
where wy is the process noise with an assumed mean of
zero and covariance Q; (Equation 12).

s 0 0
Or=Ewwi]=1 0 Gupp 0 (12)
0 0 o 2

An extended Kalman filter is an iterative process

that involves two repeated processes. The prediction

step for the fireball application will use the dynamic

Equations 6-7 along with parameters defined by the

previous dynamic optimization to estimate a future state

based on all preceding observations. The measurement

update step accepts a new observation of the state, in

this case the distance along the bright flight path only,

and calibrates the predicted outcome using an optimal

Kalman gain. This process is schematically illustrated in
Fig. 1.

Predicting Future States
The prediction step uses all previous data to derive
a suitable state estimate, X:

variance for distance, mass, and velocity.

o o
ol Om Ov
— |9 9 O
=% & % 09
o o s |
ol  om Ov A=Xk

where:

dl
1k+1 :fl (lk, my, Vi, l‘k) =+ kal = [ + vi At

16
dty ( )
— o dmk
Micp1 = fo(le, My, vie, ) = mye + d—tkAt
= my — (kmvlzcm;:)A[ (17)
dv
Vi+1 :f3(lk’mk’ Vi, tk) =V + d_kAt
s
=V — (kvvirn(“_l) — gsinvy,)At (18)
And:
2 2
ky, = Leap,Ao ( /3*11) i _ 1 enpa4o ( /3711)
v 2 2 0 yhm — > 5 0 .
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Fig. 1. Illustration of the extended Kalman filter process. a) Initialization of state. The P, matrix defines the initial uncertainties
(dashed) in velocity (red arrow) and mass (yellow). b) A prediction is made and the state matrix, X;x—i, has covariances defined
by Pi—1. Mass uncertainties are initially large, as is position (dashed red). (c) Measurement update calibrates the state and
uncertainties decrease (d) prediction step (¢) measurement step. These two processes (d—e) repeat to give a final state estimate (Xy)

and associated covariance matrix (Py).

Measurement Updates

The measurement update step follows an
observation z; (Equation 20), which for ADFO
observations is only the distance data /[ = (x1),. Hy
provides a relationship between the state of the dynamic
system and the measureable observations, simply put,
Hix; = [.. n, is the measurement noise with a mean of
zero and covariance R, (Equation 21). Ry, therefore,
accounts for errors between measured position and true
position due to aspects such as camera calibration,
triangulation, camera resolution etc.

zr = Hpxyp + ng (20)

Ry = E[nknk/] = I:O-Zkz] (21)
The predicted measurement can be made using the
output of Equation 13

Zk = HiXpk— (22)

The residual difference between z; and Z; is yi
(Equation 23). S, (Equation 24) projects the system
uncertainty into the measurement space and includes

uncertainties in the model up to #,_;, as well as the
noise covariance of the current measurement. The
optimum Kalman gain, K, (Equation 25) is used to
update the state (x;) and covariance matrices (Py)
(Equations 26-27)

Yk = Zk — Zk (23)

Sk = Hi Py H{ + Ry (24)
Ky = Py H S, (25)
Xk = Xpk—1 + Kiyk (26)
Py = (I — KxHy) Pyji— (27)

The square root of the diagonal elements of P, is
plotted as error bars so that the evolution of state
uncertainty with time can be visualized in a meaningful way.

Fireball Applications
For the nonlinear bolide dynamical equations,
Xk1k 18 calculated by  solving the nonlinear
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Equations 6-7 between f,.; and #,. P,, however, is
solved using the linearized state transition matrix, Fj
(Equation 28). The linearization of Fj approximates to:

1 0 At
0 1—kyvyml <L> At —kpvimy (%) At

mo

0 —kvv%m(()”_l) (mm(]l))At 1 —k\,v%m(()”_l) (f{))At

(28)

Fi =

The errors associated with this linearization are
included in the process covariance matrix, Q, along
with the uncertainties in the model due to unmodeled
factors such atmospheric disturbances and uncertainties
in the atmospheric model used. The value of Q@
encapsulates these model uncertainties and is specific to
the individual data set being analyzed.

P, is initialized at 7y as a function of initial data
uncertainty (Equation 29). As the length along the
flight path is relative to the initial point, there is no
model error in o, being zero (error in observation of
positions is accounted for in Rj). The initial mass
covariance is given as 0.5 times the initial mass
determined by the dynamical optimization. Distance
error and timing information give uncertainties of up to
+1500 m s~ for velocity.

ol 0 0 0 0 o)’ 0
Po= |0 o2 0[]0 (mox05ke) o
0 0 2| |0 0 (1500kms~")

(29)

The initial errors are large but P, is updated
throughout the iterative estimation, giving a concrete
representation of the evolution of the confidence of the
state estimate, incorporating the uncertainties defined by
the process noise covariance, Qy (Equation 12), and the
measurement noise covariance, R, (Equation 21). The
measurement noise covariance for the bolide problem is
set to be (100 m)> and is dependent on camera
resolution, the angle of the fireball with respect to the
camera, and calibration of lens distortion.

Smoothing Problem

More generally, we can apply a smoothing
estimator to our fireball data sets, as we will always
have the observations from the entire trajectory
available when the estimation is performed. A filtering
estimator, such as described above, uses only past
data (and hence is suitable for real-time estimation),
whereas a smoothing estimator uses all data (future
and past) to generate an optimal state estimate. The
Rauch-Tung-Striebel (RTS) smoothing algorithm is
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implemented using the method described by Sarkka
(2008). The resulting state estimate values for the
trajectory are improved, along with their uncertainties.

RESULTS

The most complete data set available to test this
method is that of Bunburra Rockhole, published by
Spurny et al. (2012), which contains 113 data points
with  time, length of segment, and altitude
information. As this data resulted in a recovered
meteorite, constraints are available on final mass
(Spurny et al. 2012), and cosmic ray exposure rates
(Welten et al. 2012) provide an estimate of initial
body diameter.

Dynamic Optimization

The dynamic optimization method described earlier,
is applied to the data set using the constraints on
parameters given in Table 2. Five parameter sets
produce a fit with cost values >0.98 (Table 3). The
initial masses range from 27.65 to 30.12 kg (Fig. 2) but
the final masses converge to values of ~2.4 kg.

Figure 2 allows a visual comparison of these model
outputs to the raw data. The parameter sets defined in
Table 3 are used to initialize a set of Kalman filters that
will take the data itself into consideration to determine
a final mass.

Kalman Filter

The Extended Kalman Filter runs separately on
each set of parameters resulting from the dynamical
optimization stage. The final states of each model setup
are given in Table 4.

The change in state values during the iterative EKF
process are graphed against time with covariance plotted
as approximate error bars (Fig. 3). The uncertainties are
high initially. Mass uncertainties are only constrained by
the data through the link to velocity with the dynamic
equations and therefore remain high while the iterative
process determines a value.

After running the forward EKF, the Rauch-Tung—
Striebel smoothing algorithm is run (Fig. 4). The
outcome of smoothing produces an initial entry mass of
30.20 + 6.53 kg.

Checking Results Using the Dimensionless Coefficient
Method

As a comparison, we also analyzed the Bunburra
Rockhole data set using the approach based on Stulov
et al. (1995) and applied by Gritsevich (2008b). In this
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Table 3. Top five best fit parameter sets resulting from dynamical optimization.

Normalized
sum of square 4
differences mgy Vo pmog/s i Il me Ve
to position (kg) (msh (kg m~)~3 (x107% J kg™h (m) (kg) (msh
1.00000 30.12 13198 0.009511 4.82 60071.8 2.36 6109
0.99859 30.95 13203 0.009689 4.76 60042.4 2.50 6100
0.98862 29.82 13203 0.009545 4.68 60061.8 2.51 6124
0.98544 28.64 13204 0.009466 4.66 60057.6 2.44 6125
0.98108 27.65 13205 0.009394 4.64 60052.7 2.38 6126
200 35
150 30
< 100 25
T 50 S
o =20
g o - @
é 50 g 15
§-1oo 10
150 | 5
0
0 1 2 3 4 5
time (s)
16702

dm/dt (kg/s)

time (s)

velocity (m/s)

0 1 2

3 4
time (s)

Fig. 2. Top left: position data subtracted from modeled position for models with parameters given in Table 3. Red curve is
model that gives the lowest normalized sum of square differences (initial mass of 30.12). Dotted line is one standard deviation
(70.14 m). Top right: shows associated change in mass for corresponding model parameters with costs >0.98. Bottom left:
derivative of mass with time for models. Bottom right: comparison of models (red curves) to calculated velocity (blue points).

Table 4. Final states (xp, my, vp) for parameter sets
from dynamic optimization corresponding to the
following initial masses.

my (kg) Xp (m) my (kg) ve(ms ')

30.12 60032 + 62 2.30 + 1.63 6052 + 241
30.95 60032 + 62 247 + 1.67 6057 + 236
29.82 60033 + 62 240 + 1.67 6061 + 238
28.64 60033 + 62 2.35 + 1.66 6062 + 240
27.65 60033 + 62 229 4+ 1.64 6062 + 242

method, the dynamic Equations 1-2 are modified by
normalizing the values of mass, velocity, and altitude
(h) to the entry mass, entry velocity, and the scale

height of the homogeneous atmosphere (o = 7160 m),
respectively. A set of dimensionless parameters (ballistic
coefficient, o [26], and mass loss parameter, B [31]) are
substituted to remove the need of unknown individual

variables.

_ ¢ pohoAomo /3

2/3

2p1ﬂ(} siny
2
ChVy
= 1—
p=(1-n el

(30)

@31
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starting mass = 30.1184285045 kg
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Fig. 3. Extended Kalman Filter results for initial mass of 30.12 kg. Top left: residual plot of position data subtracted from EKF
position estimate. Dotted lines represent one standard deviation (38.83 m). Top right: mass error bars are extracted from the
constantly updating P matrix. Bottom left: derivative of mass with time, showing relative mass loss predicted for each time step.
Bottom right: blue points represent calculated velocity values. Red points are EKF estimates of velocity given only past data
from each time step. Although mass and velocity will never realistically increase, as the EKF is provided with new data at each

time step, it corrects the values of previous estimates.

where pg is the atmospheric density near the surface and
v is the trajectory entry angle.

The Q4 method of Ileast-squares minimization
defined by Gritsevich (2008b) is used to create a fit of
the Kulakov and Stulov (1992) Equation 32 to the
Bunburra Rockhole data set.

=Inoa—In(—In¥) 4+ 0.83p(1 — V) (32)
where y =t and V' =

The isothermal atmosphere approximation is used
to derive Equation 32: p, = ¢~ ”, making it difficult to
implement a more accurate atmosphere model.

Although this method has proved successful on
previous fireball data sets (Gritsevich 2008a), these are
limited to fewer than 20 velocity points with an
average based smoothing applied (Ceplecha 1961). The
value of vy that is used to normalize all velocity values
is simply the initial velocity. For the Bunburra
Rockhole data set, the 113 data points show high
scatter and the velocity range within the first half a
second has a range of over 3500 m s~ '. It was found
that the noise in the raw data could not be

accommodated by this method without pretreating the
data, making it rather unsuitable for wuse in an
automated data pipeline where large noisy data sets
need to be processed.

Smoothing the data using a five-point moving
average, and using the average initial velocity from
Table 3, 13,200 m s~!, and a value of 2/3 for the shape
change parameter allows a result to be calculated as a
comparison to the new method. This gives o = 25.23
and B = 1.53 (Fig. 5). The equation for the ballistic
coefficient (Equation 30) allows an initial mass to be
calculated. By assuming values of the shape-density
parameter from the dynamic optimization, and a
constant drag coefficient of 1.3, an approximate value
for my is determined to be 84.92 kg.

When used in the following Equation 33, along
with a value of 2/3 for rotation, a final mass of 1.90 kg
results.

(33)

(equation 6 [Gritsevich 2008b])
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Fig. 4. RTS smoothing filter results for the best fit parameter set. Top left: residual plot of position data subtracted from RTS
position estimate. Dotted lines represent one standard deviation (36.73 m). Top right: predicted mass along trajectory. Bottom
left: derivative of mass with time, showing relative mass loss predicted for each time step. Bottom right: blue points represent
calculated velocity values. Red points are RTS estimates of velocity given both past and future state estimates.

It is difficult to assess the error in this case, and the
ranges in initial and final masses are harder to obtain.
The amount of scatter in the velocity data is significant
and a change in initial velocity used by 1% can result in
initial masses varying by +30 kg and final masses to be
+2 kg.

DISCUSSION
Determining Model Parameters

The dynamical optimization of the Bunburra
Rockhole data set returned a large number of
parameter sets with cost values >0.9, although only five
with >0.98, all of which show relatively similar starting
masses. The ranged (27.65-31.12 kg) initial masses
converge (Fig. 2) to give very similar final mass values
(Table 3). As the final masses are needed for
determining any potential fall positions, it is more
important that these values be limited. It should be
remembered that the dynamic optimization is
estimating appropriate meteoroid parameters to use as
inputs in our main model (EKF step) based on this
specific fireball data set. Previous works have assumed
“typical,” or average meteoroid parameter values,

without the link to the data from the event in question
(e.g., densities by Borovicka et al. [1998, 2013] and
McCrosky et al. [1971]; shape density coefficient used
by Ceplecha and ReVelle [2005] and Spurny et al.
[2012]). We believe that this is an advantage of our
approach. This step gives us greater confidence in the
estimates to be used in the EKF step, especially
considering the similarities in meteoroid characteristics
of the top results (Table 3).

The shape parameter and preatmospheric meteoroid
density cannot be uniquely identified in this model. The

values of ﬁ in Table 3 could correspond to a spherical
lﬂo

object (Ay = 1.21) with a preatmospheric meteoroid
density of ~1400 kg m >, a circular cylinder with a cross
sectional diameter to length ratio of roughly 1:1 and p,,,
~2700 kg m >, or even a 3:2:1 triaxial ellipsoid (as
suggested by Zhdan et al. 2007) with p,, ~3500 kg m .
A unique solution is not needed for finding any potential
meteorites and any fragments found will be able to
resolve these two parameters.

Knowing the Bunburra Rockhole bulk meteorite
density to be 2700 kg m~* (Spurny et al. 2012) enables
us to approximate the meteoroid shape, 4 ~1.85. This
corresponds to a circular cylinder with a cross sectional
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velocities normalized to an entry velocity of 13,200 m s
versus normalized altitude, y. Best fit for Equation 32 is
shown which is produced using o = 25.23 and B = 1.53.

Table 5. Values of 7 determined by the dynamical
optimization stage (Table 3) and the subsequent
approximate values of ¢,. ¢ values are given for a
drag coefficient of 1.3.

i ¢ given o

(x107% T kg™ h H* =2 x 10°J kg™ ! (x107% s> m™?)
4.820 0.0964 0.0371

4755 0.0951 0.0366

4.684 0.0937 0.0360

4.662 0.0932 0.0359

4.644 0.0929 0.0357

diameter to length ratio of roughly 1:1, or a 3:2:1.5
axial ellipsoid. If the value of 4 and p,, were to remain
constant, these values of 4y and p,, with the given
initial mass corresponds approximately to a cross
sectional area of 0.092 m? Figure 7.2 in Stulov et al.
(1995) shows a distribution of values of H* for bolides,
resulting in an overwhelming majority with entry masses
>1 kg, having values close to 2 x 10°J kg~'. If this
value i1s assumed for H*, values for ¢, can be
approximated (Table 5). It may be useful as a
comparison to give also the ablation coefficient,
G:cﬂ}* (Table 5), given a drag coefficient of 1.3. ©
values are very similar to the apparent ablation
coefficient values determined by Spurny et al. (2012).
This is to be expected as fragmentation is currently not
incorporated to allow intrinsic values of o to be
determined by the dynamic optimization.
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The Model Solution

The initial 3 s of the Bunburra Rockhole velocity
data is rather noisy, varying by around +2000 m s '.
However, it is handled coherently by our EKF
approach without the inclusion of an arbitrary
smoothing step. The EKF optimizes the state of the
bolide at each individual time-step. Each point on the
graphs of Fig. 3 are the instantaneous representation of
the state at a given time given only the past data. The
values are variable within their error ranges as the data
are not perfect. It is not a simple least squares, it does
not aim to reduce the covariance, rather it “learns”
from the data and predicts where it should be and
carries the errors forward. The covariance incorporates
both measurement uncertainty and scatter to give a
comprehensive understanding of the errors associated
with each state. Where previous works have used best
fit modeling, primarily least squares fits (Ceplecha and
ReVelle 2005), by taking this intelligent “predict” and
“update” approach, the EKF method is likely to come
closer to approximating the real position of the object
at any given time. This is reflected in the lower standard
deviation of the residual plots (38.83 m for EKF versus
70.14 m for dynamical optimization)

Despite the variation in parameter sets provided by
the dynamical optimization, the final masses which are
most important for finding any potential fall positions
(and therefore the primary solution of this modeling),
are very similar and their range constrains the final
bright flight mass. The best estimate of final mass is
2.30 + 1.63 kg and is close to the published value of
1.1 kg by Spurny et al. (2012).

The initial mass determined by Spurny et al. (2012)
using both the methods described by both Ceplecha
et al. (1998) and Ceplecha and ReVelle (2005) is
22.0 + 1.3 kg. Cosmic ray exposure rates were analyzed
for the Bunburra Rockhole meteorite; however, the pre-
entry radius was determined to be larger than a radius
corresponding to a mass of 22 kg (Welten et al. 2012).
By performing a reverse extended Kalman filter, the
entry mass is determined to be closer to 30.20 +
6.53 kg. This corresponds to a pre-entry radius of
around 17.1 cm. This is close to the 13-17 cm range
determined by (Welten et al. 2012).

Although fragmentation is not yet explicitly
handled using this method, the data reflects both effects
of ablation and fragmentation. The process noise Qy in
the EKF model handles some degree of unexpected
mass change, allowing these variations to be
incorporated in the final mass estimates.

Furthermore, sudden increases in the magnitude of
the state variance matrix P, can give an indication that
a fragmentation event may have occurred, along with
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examining the change in mass with time (Figs. 3 and 4).
It is noticeable from both Figs. 3 and 4 that there are
peaks of maximum mass loss at around 3.133 and
3.845 s as well as at 4.415 s in Fig. 3. It is likely that
these correspond to fragmentation events. These times
correspond to altitudes of 41.31, 37.16, and 34.18 km,
respectively, allowing a comparison to fig. 13 in Spurny
et al. (2012) which shows significant changes of mass at
37.8 and 35.85 km altitude. The significant mass loss
event seen in fig. 13 in Spurny et al. (2012) at 54.9 km
(corresponding to 1.0 s) is not evident, although it is
well within the large error bracket given at this time.
Future work will aim to capture this fragmentation
information in a coherent and consistent way.

The scatter in the Bunburra Rockhole data set
presented difficulties when initially attempting to use the
method outlined by Gritsevich (2008a). After smoothing
the data and using the initial parameters determined by
the dynamic optimization, final values are similar to
those determined wusing this new method. The
dependence on an initial velocity for normalization
makes it very sensitive to initial scatter and there is no
constraint on the errors this or the smoothing may
cause. The EKF method avoids these dependences.

CONCLUSION

The method outlined here provides a consistent and
detailed approach to characterizing meteoroids without
the need for brightness data as they pass through the
atmosphere. In addition, it provides a rigorous way of
propagating uncertainties in trajectory states (position,
mass, and velocity), something that previous approaches
have not explicitly described.

A dynamic optimization determines the optimum
parameters for the meteoroid flight such as the shape-
density parameter and initial mass. An extended
Kalman filter then includes observation and dynamic
uncertainty models, which are valuable in understanding
the errors in the model states, and which can adapt to
fragmentation events or other unexpected dynamic
changes. The initial (30.20 £+ 6.53 kg) and final masses
(2.30 £ 1.63 kg) calculated for the Bunburra Rockhole
data set is within the range of previously published
values by Spurny et al. (2012) (22.0 + 1.3 and 1.1 kg,
respectively) and corresponds with cosmic ray exposure
studies (Welten et al. 2012) to constrain preatmospheric
radius and mass. Although the method used by
Gritsevich (2008b) was re-created using the meteoroid
characteristics determined by dynamic optimization, the
sensitivity of this method to (widely varying) data for
initial entry velocity translates to a range of estimates
for entry and terminal masses. As the errors are not
quantified, the confidence in mass calculations using this

E. K. Sansom et al.

method—crucial for automating our data flow and
constraining search areas—cannot be constrained.

The two-step approach outlined in this paper is an
automated method which will allow the DFN to reduce
data for every observed fireball, rather than only
selecting high value or unusual cases. For the subset
that involve a meteorite fall, this approach will calculate
multiple fall positions with comprehensive error values
to allow for efficient recovery searches. Work still needs
to be carried out on integrating the variability in the
heat-transfer coefficient. The assumption in this method
that it remains constant throughout the trajectory is a
simplification. The identification and analysis of
fragmentation events also needs to be incorporated in a
more coherent and consistent manner.
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