147 research outputs found

    The Brain Microvascular Endothelium Supports T Cell Proliferation and Has Potential for Alloantigen Presentation

    Get PDF
    Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases. © 2013 Wheway et al

    Production, Fate and Pathogenicity of Plasma Microparticles in Murine Cerebral Malaria

    Full text link
    In patients with cerebral malaria (CM), higher levels of cell-specific microparticles (MP) correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS) on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated. Using annexin V, a PS ligand, and flow cytometry, analysis of platelet-free plasma from infected mice with cerebral involvement showed a peak of MP levels at the time of the neurological onset. Phenotypic analyses showed that MP from infected mice were predominantly of platelet, endothelial and erythrocytic origins. To determine the in vivo fate of MP, we adoptively transferred fluorescently labelled MP from mice with CM into healthy or infected recipient mice. MP were quickly cleared following intravenous injection, but microscopic examination revealed arrested MP lining the endothelium of brain vessels of infected, but not healthy, recipient mice. To determine the pathogenicity of MP, we transferred MP from activated endothelial cells into healthy recipient mice and this induced CM-like brain and lung pathology. This study supports a pathogenic role for MP in the aggravation of the neurological lesion and suggests a causal relationship between MP and the development of CM. © 2014 El-Assaad et al

    Endothelial Cells Potentiate Interferon-γ Production in a Novel Tripartite Culture Model of Human Cerebral Malaria

    Get PDF
    We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition. © 2013 Khaw et al

    Comparison of cellular responses to TGF-β1 and BMP-2 between healthy and torn tendons

    Get PDF
    Background: Tendons heal by fibrotic repair, increasing the likelihood of reinjury. Animal tendon injury and overuse models have identified transforming growth factor beta (TGF-β) and bone morphogenetic proteins (BMPs) as growth factors actively involved in the development of fibrosis, by mediating extracellular matrix synthesis and cell differentiation. Purpose: To understand how TGF-β and BMPs contribute to fibrotic processes using tendon-derived cells isolated from healthy and diseased human tendons. Study Design: Controlled laboratory study. Methods: Tendon-derived cells were isolated from patients with a chronic rotator cuff tendon tear (large to massive, diseased) and healthy hamstring tendons of patients undergoing anterior cruciate ligament repair. Isolated cells were incubated with TGF-β1 (10 ng/mL) or BMP-2 (100 ng/mL) for 3 days. Gene expression was measured by real-time quantitative polymerase chain reaction. Cell signaling pathway activation was determined by Western blotting. Results: TGF-β1 treatment induced ACAN mRNA expression in both cell types but less in the diseased compared with healthy cells (P < .05). BMP-2 treatment induced BGN mRNA expression in healthy but not diseased cells (P < .01). In the diseased cells, TGF-β1 treatment induced increased ACTA2 mRNA expression (P < .01) and increased small mothers against decapentaplegic (SMAD) signaling (P < .05) compared with those of healthy cells. Moreover, BMP-2 treatment induced ACTA2 mRNA expression in the diseased cells only (P < .05). Conclusion: Diseased tendon–derived cells show reduced expression of the proteoglycans aggrecan and biglycan in response to TGF-β1 and BMP-2 treatments. These same treatments induced enhanced fibrotic differentiation and canonical SMAD cell signaling in diseased compared with healthy cells. Clinical Relevance: Findings from this study suggest that diseased tendon–derived cells respond differently than healthy cells in the presence of TGF-β1 and BMP-2. The altered responses of diseased cells may influence fibrotic repair processes during tendon healing

    High throughput high content reverse genetics visual screens of ciliogenesis and cilia maintenance

    Get PDF
    Cilia are small, hair-like structures occurring on the apical surface of most of vertebrate cells. Defects in cilia cause a range of developmental phenotypes grouped into conditions called ciliopathies. Our aim is to dissect the structure and function of cilia and signalling pathways mediated by this organelle. To evaluate this, we are performing a high-throughput siRNA screen using siRNA pools (from the Dharmacon mouse genome siRNA library) targeting over 19,000 separate transcripts and immunofluorescence staining of ciliated mIMCD3 (transformed mouse inner medullary collecting duct) cells to determine cilia number, length and morphology. Secondary datasets from the screen will include measurements of cell size and morphology, nuclear morphology and cell cycle profiles. We have successfully set up a facility for high-throughput high-content imaging, optimized a reverse transfection protocol and validated a series of positive and negative controls. We are currently completing the analysis of candidate hits and expect to obtain several hundred positive hits from the whole screen. We will present the first dataset from this screen with a discussion of prioritization strategies for the validation of the most relevant and interesting candidate hits

    Racgap1 knockdown results in cells with multiple cilia due to cytokinesis failure

    Get PDF
    Most mammalian cells have a single primary cilium that acts as a signalling hub in mediating cellular functions. However, little is known about the mechanisms that result in aberrant supernumerary primary cilia per cell. In this study, we re-analysed a previously published whole-genome siRNA-based reverse genetic screen for genes mediating ciliogenesis to identify knockdowns that permit multi-ciliation. We identified siRNA knockdowns that caused significant formation of supernumerary cilia, validated candidate hits in different cell-lines and confirmed that RACGAP1, a component of the centralspindlin complex, was the strongest candidate hit at the whole-genome level. Following loss of RACGAP1, mother centrioles were specified correctly prior to ciliogenesis and the cilia appeared normal. Live cell imaging revealed that increased cilia incidence was caused by cytokinesis failure which led to the formation of multinucleate cells with supernumerary cilia. This suggests that the signalling mechanisms for ciliogenesis are unable to identify supernumerary centrosomes and therefore allow ciliation of duplicated centrosomes as if they were in a new diploid daughter cell. These results, demonstrating that aberrant ciliogenesis is de-coupled from cell cycle regulation, have functional implications in diseases marked by centrosomal amplification

    15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture.

    Get PDF
    Resolution of inflammation is poorly understood in Achilles tendon disorders. Herein, we investigated the bioactive lipid mediator profiles of tendon-derived stromal cells isolated from patients with Achilles tendinopathy (AT) or Achilles rupture (AR) under baseline and IL-1β-stimulated conditions. We also determined whether incubating these cells with 2 of the mediators produced by tendon-derived stromal cells, 15-epi-Lipoxin A4 (15-epi-LXA4) or maresin (MaR)-1, moderated their proinflammatory phenotype. Under baseline conditions, AT cells showed concurrent increased levels of proinflammatory eicosanoids and proresolving mediators compared with AR cells. IL-1β treatment induced profound prostaglandin E2 release in AR compared with AT cells. Incubation of IL-1β treated AT and AR tendon-derived stromal cells in 15-epi-LXA4 or MaR1 reduced proinflammatory eicosanoids and potentiated the release of proresolving mediators. These mediators also induced specialized proresolving mediator (SPM) biosynthetic enzymes arachidonate lipoxygenase (ALOX) 12 and ALOX15 and up-regulated the proresolving receptor ALX compared with vehicle-treated cells. Incubation in 15-epi-LXA4 or MaR1 also moderated the proinflammatory phenotype of AT and AR cells, regulating podoplanin, CD90, signal transducer and activator of transcription (STAT)-1, IL-6, IFN regulatory factor (IRF) 5, and TLR4 and suppressed c-Jun N-terminal kinase 1/2/3, Lyn, STAT-3, and STAT-6 phosphokinase signaling. In summary, we identify proresolving mediators that are active in AT and AR and propose SPMs, including 15-epi-LXA4 or MaR1, as a potential strategy to counterregulate inflammatory processes in these cells.-Dakin, S. G., Colas, R. A., Newton, J., Gwilym, S., Jones, N., Reid, H. A. B., Wood, S., Appleton, L., Wheway, K., Watkins, B., Dalli, J., Carr, A. J. 15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture.European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant 677542Barts Charity (Grant MGU0343)Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant 107613/Z/15/Z

    ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis

    Get PDF
    Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathie

    WT1 activates transcription of the splice factor kinase SRPK1 gene in PC3 and K562 cancer cells in the absence of corepressor BASP1

    Get PDF
    Dysregulated alternative splicing plays a prominent role in all hallmarks of cancer. The splice factor kinase SRPK1 drives the activity of oncogenic splice factors such as SRSF1. SRSF1 in turn promotes the expression of splice isoforms that favour tumour growth, including proangiogenic VEGF. Knockdown (with siRNA) or chemical inhibition (using SPHINX) of SRPK1 in K562 leukemia and PC3 prostate cancer cell lines reduced cell proliferation, invasion and migration. In glomerular podocytes, the Wilms tumour suppressor zinc-finger transcription factor WT1 represses SRPK1 transcription. Here we show that in cancer cells WT1 activates SRPK1 transcription, unless a canonical WT1 binding site adjacent to the transcription start site is mutated. The ability of WT1 to activate SRPK1 transcription was reversed by the transcriptional corepressor BASP1, and both WT1 and BASP1 co-precipitated with the SRPK1 promoter. BASP1 significantly increased the expression of the antiangiogenic VEGF165b splice isoform. We propose that by upregulating SRPK1 transcription WT1 can direct an alternative splicing landscape that facilitates tumour growth

    The Palestinian primary ciliary dyskinesia population: first results of the diagnostic, and genetic spectrum

    Get PDF
    BACKGROUND: Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. METHODS: Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. RESULTS: 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median −1.90 (−5.0–1.32)) and growth was mostly within the normal range (z-score mean −0.36 (−3.03–2.57). 19% individuals had finger clubbing. CONCLUSIONS: Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity
    • …
    corecore